Accurate Stabilities of Laccase Mutants Predicted with a Modified FoldX Protocol
Publication: Research - peer-review › Journal article – Annual report year: 2012
Standard
Accurate Stabilities of Laccase Mutants Predicted with a Modified FoldX Protocol. / Christensen, Niels Johan; Kepp, Kasper Planeta.
In: Journal of Chemical Information and Modeling, 2012, p. 3028-3042.Publication: Research - peer-review › Journal article – Annual report year: 2012
Harvard
APA
CBE
MLA
Vancouver
Author
Bibtex
}
RIS
TY - JOUR
T1 - Accurate Stabilities of Laccase Mutants Predicted with a Modified FoldX Protocol
AU - Christensen,Niels Johan
AU - Kepp,Kasper Planeta
N1 - © 2012 American Chemical Society
PY - 2012
Y1 - 2012
N2 - Fungal laccases are multi-copper enzymes of industrial importance due to their high stability, multi-functionality, and oxidizing power. This paper reports computational protocols that quantify the relative stability (∆∆G of folding) of mutants of high-redox-potential laccases (TvLIIIb and PM1L) with up to 11 simultaneously mutated sites with good correlation against experimental stability trends. Molecular dynamics simulations of the two laccases show that FoldX is very structure-sensitive, since all mutants and the wild-type must share structural configuration to avoid artifacts of local sampling. However, using the average of 50 MD snapshots of the equilibrated trajectories restores correlation (r ~0.7-0.9, r2 ~0.49-0.81) and provides a root-mean-square accuracy of ~1.2 kcal/mol for ∆∆G or 3.5 ○C for T50, suggesting that the time-average of the crystal structure is recovered. MD-averaged input also reduces the spread in ∆∆G, suggesting that local FoldX sampling overestimates free energy changes because of neglected protein relaxation. FoldX can be viewed as a simple “linear interaction energy” method using sampling of wild-type and mutant and a parameterized relative free energy function: Thus, we show in this work that a substantial “hysteresis” of ~1 kcal/mol applies to FoldX, and that an improved protocol that reverses calculations and uses the average obtained ∆∆G enhances correlation with the experimental data. As glycosylation is ignored in FoldX, its effect on ∆∆G must be additive to the amino acid mutations. Quantitative structure-property relationships of the FoldX energy components produced a substantially improved laccase stability predictor with errors of ~1 ○C for T50, vs. 3-5 ○C for a standard FoldX protocol. The developed model provides insight into the physical forces governing the high stability of fungal laccases, most notably the hydrophobic and Van der Waal's interactions in the folded state, which provide most of the predictive power.
AB - Fungal laccases are multi-copper enzymes of industrial importance due to their high stability, multi-functionality, and oxidizing power. This paper reports computational protocols that quantify the relative stability (∆∆G of folding) of mutants of high-redox-potential laccases (TvLIIIb and PM1L) with up to 11 simultaneously mutated sites with good correlation against experimental stability trends. Molecular dynamics simulations of the two laccases show that FoldX is very structure-sensitive, since all mutants and the wild-type must share structural configuration to avoid artifacts of local sampling. However, using the average of 50 MD snapshots of the equilibrated trajectories restores correlation (r ~0.7-0.9, r2 ~0.49-0.81) and provides a root-mean-square accuracy of ~1.2 kcal/mol for ∆∆G or 3.5 ○C for T50, suggesting that the time-average of the crystal structure is recovered. MD-averaged input also reduces the spread in ∆∆G, suggesting that local FoldX sampling overestimates free energy changes because of neglected protein relaxation. FoldX can be viewed as a simple “linear interaction energy” method using sampling of wild-type and mutant and a parameterized relative free energy function: Thus, we show in this work that a substantial “hysteresis” of ~1 kcal/mol applies to FoldX, and that an improved protocol that reverses calculations and uses the average obtained ∆∆G enhances correlation with the experimental data. As glycosylation is ignored in FoldX, its effect on ∆∆G must be additive to the amino acid mutations. Quantitative structure-property relationships of the FoldX energy components produced a substantially improved laccase stability predictor with errors of ~1 ○C for T50, vs. 3-5 ○C for a standard FoldX protocol. The developed model provides insight into the physical forces governing the high stability of fungal laccases, most notably the hydrophobic and Van der Waal's interactions in the folded state, which provide most of the predictive power.
KW - Protein stability
KW - Laccases
KW - FoldX
KW - Molecular dynamica
KW - QSPR
U2 - 10.1021/ci300398z
DO - 10.1021/ci300398z
M3 - Journal article
SP - 3028
EP - 3042
JO - Journal of Chemical Information and Modeling
T2 - Journal of Chemical Information and Modeling
JF - Journal of Chemical Information and Modeling
SN - 1549-9596
ER -