Accuracy Evaluation of a New Real-Time Continuous Glucose Monitoring Algorithm in Hypoglycemia - DTU Orbit (15/01/2019)

Accuracy Evaluation of a New Real-Time Continuous Glucose Monitoring Algorithm in Hypoglycemia

Background: The purpose of this study was to evaluate the performance of a new continuous glucose monitoring (CGM) calibration algorithm and to compare it with the Guardian® REAL-Time (RT) (Medtronic Diabetes, Northridge, CA) calibration algorithm in hypoglycemia.

Subjects and Methods: CGM data were obtained from 10 type 1 diabetes patients undergoing insulin-induced hypoglycemia. Data were obtained in two separate sessions using the Guardian RT CGM device. Data from the same CGM sensor were calibrated by two different algorithms: the Guardian RT algorithm and a new calibration algorithm. The accuracy of the two algorithms was compared using four performance metrics.

Results: The median (mean) of absolute relative deviation in the whole range of plasma glucose was 20.2% (32.1%) for the Guardian RT calibration and 17.4% (25.9%) for the new calibration algorithm. The mean (SD) sample-based sensitivity for the hypoglycemic threshold of 70 mg/dL was 31% (33%) for the Guardian RT algorithm and 70% (33%) for the new algorithm. The mean (SD) sample-based specificity at the same hypoglycemic threshold was 95% (8%) for the Guardian RT algorithm and 90% (16%) for the new calibration algorithm. The sensitivity of the event-based hypoglycemia detection for the hypoglycemic threshold of 70 mg/dL was 61% for the Guardian RT calibration and 89% for the new calibration algorithm. Application of the new calibration caused one false-positive instance for the event-based hypoglycemia detection, whereas the Guardian RT caused no false-positive instances. The overestimation of plasma glucose by CGM was corrected from 33.2 mg/dL in the Guardian RT algorithm to 21.9 mg/dL in the new calibration algorithm.

Conclusions: The results suggest that the new algorithm may reduce the inaccuracy of Guardian RT CGM system within the hypoglycemic range; however, data from a larger number of patients are required to compare the clinical reliability of the two algorithms.

General information

State: Published
Organisations: Aalborg University, Aarhus University
Contributors: Mahmoudi, Z., Jensen, M. H., Dencker Johansen, M., Christensen, T. F., Tarnow, L., Christiansen, J. S., Hejlesen, O. K.
Pages: 667-678
Publication date: 2014
Peer-reviewed: Yes

Publication information

Journal: Diabetes Technology & Therapeutics
Volume: 16
Issue number: 10
ISSN (Print): 1520-9156
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.58 SJR 1.735 SNIP 1.299
Web of Science (2017): Impact factor 2.921
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.44 SJR 1.361 SNIP 1.129
Web of Science (2016): Impact factor 2.698
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.52 SJR 1.245 SNIP 1.071
Web of Science (2015): Impact factor 2.198
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.09 SJR 1.332 SNIP 1.13
Web of Science (2014): Impact factor 2.106
Web of Science (2014): Indexed yes