Accelerating Dense Linear Algebra on the GPU

Publication: ResearchSound/Visual production (digital) – Annual report year: 2011

View graph of relations

GPUs have already become an integral part of high performance scientific computing, since they offer dedicated parallel hardware that can potentially accelerate the execution of many scientific applications. In this talk, I will consider the automatic performance acceleration of dense vector and matrix-vector operations on GPUs. Such operations form the backbone of level 1 and level 2 routines in the Basic Linear Algebra Subroutines (BLAS) library and are therefore of great importance in many scientific applications. The target hardware is the most recent NVIDIA Tesla 20-series (Fermi architecture). Most of the techniques I discuss for accelerating dense linear algebra are applicable to memory-bound GPU algorithms in general.
Original languageEnglish
Publication date2011
StatePublished

Conference

ConferenceAccelerating Computations : Workshop
CityAarhus, Denmark
Period01/01/11 → …
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 6374756