Protein synthesis is the most energy-consuming process in a proliferating cell, and understanding what controls protein abundances represents a key question in biology and biotechnology. We quantified absolute abundances of 5,354 mRNAs and 2,198 proteins in Saccharomyces cerevisiae under ten environmental conditions and protein turnover for 1,384 proteins under a reference condition. The overall correlation between mRNA and protein abundances across all conditions was low (0.46), but for differentially expressed proteins ($n = 202$), the median mRNA-protein correlation was 0.88. We used these data to model translation efficiencies and found that they vary more than 400-fold between genes.

Non-linear regression analysis detected that mRNA abundance and translation elongation were the dominant factors controlling protein synthesis, explaining 61% and 15% of its variance. Metabolic flux balance analysis further showed that only mitochondrial fluxes were positively associated with changes at the transcript level. The present dataset represents a crucial expansion to the current resources for future studies on yeast physiology.

General information

State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Yeast Cell Factories, Chalmers University of Technology, University of Tartu
Contributors: Lahtvee, P., Sanchez, B. J., Smialowska, A., Kasvandik, S., Elsemman, I., Gatto, F., Nielsen, J.
Pages: 495-504
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Cell Systems
Volume: 4
Issue number: 5
ISSN (Print): 2405-4712
Ratings:
Web of Science (2019): Indexed yes
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 4.98
Web of Science (2017): Impact factor 8.982
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 4.31
Original language: English
Electronic versions: AS_477588335403009_1490877340383_content.pdf
DOIs: 10.1016/j.cels.2017.03.003
Source: PublicationPreSubmission
Source-ID: 130946802
Research output: Research - peer-review | Journal article – Annual report year: 2017