A wavenumber approach to quantifying the isotropy of the sound field in reverberant spaces
- DTU Orbit (21/11/2018)

This study proposes an experimental method for evaluating isotropy in enclosures, based on an analysis of the wavenumber spectrum in the spherical harmonics domain. The wavenumber spectrum, which results from expanding an arbitrary sound field into a plane-wave basis, is used to characterize the spatial properties of the observed sound field. Subsequently, the obtained wavenumber spectrum is expanded into a series of spherical harmonics, and the moments from this spherical expansion are used to characterize the isotropy of the wave field. The analytical framework is presented. The method is examined numerically and experimentally, based on array measurements in four chambers: two anechoic chambers (one with a single source and another with an array of 52 sources), a reverberation chamber, and the same reverberation chamber with a sample of absorbing material on the floor. The results indicate that the proposed methodology is suitable for assessing the isotropy of a sound field.

General information
State: Published
Organisations: Department of Electrical Engineering, Acoustic Technology
Contributors: Nolan, M., Fernandez Grande, E., Brunskog, J., Jeong, C.
Pages: 2514-2526
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of the Acoustical Society of America
Volume: 143
Issue number: 4
ISSN (Print): 0001-4966
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 1.77 SJR 0.695 SNIP 1.224
Web of Science (2017): Impact factor 1.605
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 1.83 SJR 0.819 SNIP 1.271
Web of Science (2016): Impact factor 1.547
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 1.77 SJR 0.854 SNIP 1.416
Web of Science (2015): Impact factor 1.572
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 1.8 SJR 0.887 SNIP 1.402
Web of Science (2014): Impact factor 1.503
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2 SJR 0.707 SNIP 1.937
Web of Science (2013): Impact factor 1.555
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 1.75 SJR 0.771 SNIP 1.619
Web of Science (2012): Impact factor 1.646
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 1.68 SJR 0.686 SNIP 1.624
Web of Science (2011): Impact factor 1.55