A Unified Approach to Restoration, Deinterlacing and Resolution Enhancement in Decoding MPEG-2 Video

Publication: Research - peer-reviewJournal article – Annual report year: 2002



View graph of relations

The quality and spatial resolution of video can be improved by combining multiple pictures to form a single superresolution picture. We address the special problems associated with pictures of variable but somehow parameterized quality such as MPEG-decoded video. Our algorithm provides a unified approach to restoration, chrominance upsampling, deinterlacing, and resolution enhancement. A decoded MPEG-2 sequence for interlaced standard definition television (SDTV) in 4:2:0 is converted to: (1) improved quality interlaced SDTV in 4:2:0; (2) interlaced SDTV in 4:4:4; (3) progressive SDTV in 4:4:4; (4) interlaced high-definition TV (HDTV) in 4:2:0; (5) progressive HDTV in 4:2:0. These conversions also provide features such as freeze frame and zoom. The algorithm is mainly targeted at bit rates of 4-8 Mb/s. The algorithm is based on motion-compensated spatial upsampling from multiple images and decimation to the desired format. The processing involves an estimated quality of individual pixels based on MPEG image type and local quantization value. The mean-squared error (MSE) is reduced, compared to the directly decoded sequence, and annoying ringing artifacts, including mosquito noise, are effectively suppressed. The superresolution pictures obtained by the algorithm are of much higher visual quality and have lower MSE than superresolution pictures obtained by simple spatial interpolation.
Original languageEnglish
JournalI E E E Transactions on Circuits and Systems for Video Technology
Issue number9
Pages (from-to)803-811
StatePublished - 2002

Bibliographical note

Copyright: 2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE

CitationsWeb of Science® Times Cited: 12
Download as:
Download as PDF
Select render style:
Download as HTML
Select render style:
Download as Word
Select render style:

Download statistics

No data available

ID: 4246526