A trait-based approach to understanding marine communities composition, assembly and diversity - DTU Orbit (04/12/2018)

A trait-based approach to understanding marine communities composition, assembly and diversity

A species occurs and thrives in a community thanks to its capacity to grow, reproduce and feed in its surrounding environment. Understanding how and why some species thrive in particular areas has often been touched upon by studying the species composition of communities. Traditionally, communities are characterised by their taxonomic diversity, such as their species richness or the evenness in their abundances. However, there is growing evidence that it is not the taxonomic identity of the species per se that control its presence and abundance in a given environment but its characteristics. Species traits refer to quantitatively or qualitatively measurable characteristics of a species. Characterizing species by their key traits can permit an understanding of general mechanisms and unravel the processes affecting coexistence in communities. The aim of this thesis was to apply the trait-based approach to study the composition of marine communities located in the European Seas and relate their spatial patterns to environmental and anthropogenic pressures.

The species composition of communities can be constrained by several processes, such as competition and the environment. Using a trait-based approach, we studied the diversity and the processes influencing the composition of demersal fish communities in the Baltic Sea. While species richness was sharply decreasing from the saline Kattegat to the brackish Gdansk Bay, trait richness tended to decrease at a lower rate. We found that the species co-occurring in the Eastern Baltic Sea were in general more ecologically similar, in terms of their traits, than expected by random chance alone with a strong influence of the environment and notably the salinity gradient on the distribution and trait composition of the communities. While traits are increasingly used in community ecology, they are often selected and used without a consistent framework. We made use of a theoretical framework that defines life history strategies as a combination of key traits and their trade-offs to investigate large-scale patterns and drivers of fish community composition across European Seas. We assembled an extensive number of surveys in the European seas and collected reproductive traits for more than 300 fish species present in these surveys. Based on their traits, fish species could be categorized into three strategies that reflect the evolutionary and environmental constraints acting on the species. The strategies’ prevalence exhibited strong geographical patterns which could be explained by spatial variability in annual sea surface temperature, temperature seasonality, depth and fishing intensity. Due to their tight coupling to the environment, notably temperature and fishing, life history strategies could be a suitable tool to monitor and understand community changes in response to natural and anthropogenic stressors, including climate change. Spatial patterns of community mean traits and their relationship with the environment are generally assessed on a single taxonomic group. As a result, it is still unclear whether the relationship found for one taxonomic group can be generalised to other taxonomic groups that compose the ecosystem. Yet, understanding the responses of these different groups to environmental pressures is a prerequisite to conserve and manage ecosystems. We studied the spatial pattern of community traits of three key taxonomic groups in the North Sea: copepods, benthos, and fish. We extracted the community composition of these groups from three scientific surveys covering the entire North Sea and combined them with key life history traits common to all three groups: adult size, offspring size and fecundity. While many of the traits co-varied in space and notably demonstrated a latitudinal gradient, none of the traits had a consistent, either positive or negative, relationship across all taxa. The spatial trait-variability could be explained by taxon-specific habitat condition. Thus, trait responses to environmental gradient cannot be generalized across these marine taxonomic groups, pointing toward potential complex responses of multi-taxon communities to environmental changes.

This thesis highlights the value of using traits to understand why communities are composed of a specific set of species and how the mean traits of these communities varies along environmental and anthropogenic gradient. This thesis stresses the utility of the trait-based approach, due to its generality, to compare communities at different scales, from different regions as well as communities composed of different taxonomic entities. The trait-based approach still has a lot to offer to unravel the processes controlling the composition of communities and species distribution, and its use in marine ecology has yet to be extended to other domains, such as understanding the impacts of functional traits composition on the ecosystem functioning in the marine realm.

General information
State: Published
Organisations: National Institute of Aquatic Resources, Centre for Ocean Life
Contributors: Pécuchet, L.
Number of pages: 126
Publication date: 2017

Publication information
Publisher: DTU Aqua. National Institute of Aquatic Resources
Original language: English
Research output: Research › Ph.D. thesis – Annual report year: 2017