A topology optimized switchable permanent magnet system

The design of a magnetic field source that can switch from a high field to a low field configuration by rotation by 90° of a set of iron pieces is investigated using topology optimization. A Halbach cylinder is considered as the magnetic field source and iron inserts are placed in the air gap of the Halbach cylinder. The ideal shape of these iron inserts is determined as function of the field generated by the Halbach cylinder and as function of the size of the iron segments. The topology optimized structures are parabolic shaped pieces and have a difference in flux density between the high and low positions that is on average 1.29 times higher than optimized regular pole pieces. The maximum increase is a factor of 2.08 times higher than the regular pole pieces.

General information
State: Published
Organisations: Department of Energy Conversion and Storage, Electrofunctional materials
Contributors: Bjørk, R., Insinga, A. R.
Pages: 106-113
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Magnetism and Magnetic Materials
Volume: 465
ISSN (Print): 0304-8853
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.97 SJR 0.786 SNIP 1.349
Web of Science (2017): Impact factor 3.046
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.41 SJR 0.699 SNIP 1.181
Web of Science (2016): Impact factor 2.63
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.33 SJR 0.73 SNIP 1.296
Web of Science (2015): Impact factor 2.357
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.07 SJR 0.815 SNIP 1.423
Web of Science (2014): Impact factor 1.97
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.03 SJR 0.801 SNIP 1.385
Web of Science (2013): Impact factor 2.002
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.95 SJR 0.928 SNIP 1.294
Web of Science (2012): Impact factor 1.826
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.84 SJR 1.07 SNIP 1.275
Web of Science (2011): Impact factor 1.78
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.936 SNIP 0.987
Web of Science (2010): Impact factor 1.69
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.844 SNIP 0.908
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.867 SNIP 0.903
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.711 SNIP 0.844
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.838 SNIP 0.882
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.699 SNIP 0.692
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.811 SNIP 1.044
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.051 SNIP 0.957
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.233 SNIP 1.143
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.209 SNIP 0.978
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.832 SNIP 0.936
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.875 SNIP 0.912
Original language: English
Keywords: Topology optimization, Halbach cylinder, Magnetic field, Permanent magnet flux sources, Switchable field source
DOIs: 10.1016/j.jmmm.2018.05.076
Source: FindIt
Source-ID: 2434827976
Research output: Research - peer-review › Journal article – Annual report year: 2018