A topology optimization method based on the level set method for the design of negative permeability dielectric metamaterials

Publication: Research - peer-reviewJournal article – Annual report year: 2012

View graph of relations

This paper presents a level set-based topology optimization method for the design of negative permeability dielectric metamaterials. Metamaterials are artificial materials that display extraordinary physical properties that are unavailable with natural materials. The aim of the formulated optimization problem is to find optimized layouts of a dielectric material that achieve negative permeability. The presence of grayscale areas in the optimized configurations critically affects the performance of metamaterials, positively as well as negatively, but configurations that contain grayscale areas are highly impractical from an engineering and manufacturing point of view. Therefore, a topology optimization method that can obtain clear optimized configurations is desirable. Here, a level set-based topology optimization method incorporating a fictitious interface energy is applied to a negative permeability dielectric metamaterial design problem. The optimization algorithm uses the Finite Element Method (FEM) for solving the equilibrium and adjoint equations, and design problems are formulated for both two- and three-dimensional cases. First, the level set-based topology optimization method is explained, and the optimization problems for the design of metamaterials are then discussed. Several optimum design examples for the design of dielectric metamaterials that demonstrate negative effective permeability at prescribed frequencies are provided to confirm the utility and validity of the presented method.
Original languageEnglish
JournalComputer Methods in Applied Mechanics and Engineering
Pages (from-to)192-211
StatePublished - 2012
CitationsWeb of Science® Times Cited: 42


  • Dielectric metamaterials, Negative permeability, Topology optimization, Finite Element Method, Level set method, Adjoint Variable Method
Download as:
Download as PDF
Select render style:
Download as HTML
Select render style:
Download as Word
Select render style:

ID: 10004750