A three-level framework for performance-based railway timetabling

The performance of railway operations depends highly on the quality of the railway timetable. In particular for dense railway networks it can be challenging to obtain a stable robust conflict-free and energy-efficient timetable with acceptable infrastructure occupation and short journey times. This paper presents a performance-based railway timetabling framework integrating timetable construction and evaluation on three levels: microscopic, macroscopic, and a corridor fine-tuning level, where each performance indicator is optimized or evaluated at the appropriate level. A modular implementation of the three-level framework is presented and demonstrated on a case study on the Dutch railway network illustrating the feasibility of this approach to achieve the highest timetabling design level.

General information
State: Published
Organisations: Department of Management Engineering, Delft University of Technology, Technische Universität Dresden, University of Bologna
Contributors: Goverde, R. M. P., Bešinović, N., Binder, A., Cacchiani, V., Quaglietta, E., Roberti, R., Toth, P.
Pages: 62-83
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Transportation Research. Part C: Emerging Technologies
Volume: 67
ISSN (Print): 0968-090X
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.17 SJR 2.293 SNIP 2.907
Web of Science (2017): Impact factor 3.968
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.43 SJR 1.998 SNIP 2.638
Web of Science (2016): Impact factor 3.805
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.23 SJR 2.026 SNIP 2.714
Web of Science (2015): Impact factor 3.075
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.84 SJR 2.045 SNIP 3.169
Web of Science (2014): Impact factor 2.818
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.01 SJR 1.851 SNIP 3.648
Web of Science (2013): Impact factor 2.82
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.76 SJR 1.542 SNIP 2.823
Web of Science (2012): Impact factor 2.006
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.85 SJR 1.42 SNIP 3.157
Web of Science (2011): Impact factor 1.957
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 0.937 SNIP 2.356
Web of Science (2010): Impact factor 1.702
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.088 SNIP 2.369
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 0.977 SNIP 2.523
Scopus rating (2007): SJR 0.901 SNIP 1.581
Scopus rating (2006): SJR 1.915 SNIP 2.76
Scopus rating (2005): SJR 1.49 SNIP 3.074
Scopus rating (2004): SJR 1.336 SNIP 2.802
Scopus rating (2003): SJR 0.84 SNIP 1.858
Scopus rating (2002): SJR 0.719 SNIP 2.067
Scopus rating (2001): SJR 0.577 SNIP 1.344
Scopus rating (2000): SJR 0.565 SNIP 1.378
Scopus rating (1999): SJR 0.512 SNIP 1.913
Original language: English
Keywords: Computer Science Applications, Management Science and Operations Research, Automotive Engineering, Transportation, Energy efficiency, Micro-macro, Railway timetabling, Robustness, Stability
Electronic versions:
hkkr_316619_2_.pdf. Embargo ended: 27/02/2018
DOI:
10.1016/j.trc.2016.02.004
Source: FindIt
Source-ID: 2295497416
Research output: Research - peer-review › Journal article – Annual report year: 2016