A third order accurate Lagrangian finite element scheme for the computation of generalized molecular stress function fluids - DTU Orbit (23/12/2018)

A third order accurate Lagrangian finite element scheme for the computation of generalized molecular stress function fluids

A third order accurate, in time and space, finite element scheme for the numerical simulation of three-dimensional time-dependent flow of the molecular stress function type of fluids in a generalized formulation is presented. The scheme is an extension of the K-BKZ Lagrangian finite element method presented by Marin and Rasmussen (2009).

General information
State: Published
Organisations: Department of Mechanical Engineering, Manufacturing Engineering
Contributors: Fasano, A., Rasmussen, H. K.
Pages: 10-20
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Non-Newtonian Fluid Mechanics
Volume: 246
ISSN (Print): 0377-0257
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.44 SJR 1.14 SNIP 1.509
Web of Science (2017): Impact factor 2.293
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.43 SJR 1.145 SNIP 1.604
Web of Science (2016): Impact factor 2.536
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.23 SJR 1.155 SNIP 1.505
Web of Science (2015): Impact factor 2.172
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 1.96 SJR 0.988 SNIP 1.324
Web of Science (2014): Impact factor 1.821
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.09 SJR 1.024 SNIP 1.606
Web of Science (2013): Impact factor 1.944
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 1.93 SJR 1.101 SNIP 1.532
Web of Science (2012): Impact factor 1.567
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 1.93 SJR 1.09 SNIP 1.408
Web of Science (2011): Impact factor 1.675
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.232 SNIP 1.743
Web of Science (2010): Impact factor 1.572
Original language: English
Keywords: Lagrangian, Finite element, Molecular stress function, Polymer melt, Melt
DOIs: 10.1016/j.jnnfm.2017.05.003
Research output: Research - peer-review > Journal article – Annual report year: 2017