A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction

Publication: Research - peer-reviewJournal article – Annual report year: 2011

View graph of relations

Theoretical studies of the possibility of forming ammonia electrochemically at ambient temperature and pressure are presented. Density functional theory calculations were used in combination with the computational standard hydrogen electrode to calculate the free energy profile for the reduction of N2 admolecules and N adatoms on several close-packed and stepped transition metal surfaces in contact with an acidic electrolyte. Trends in the catalytic activity were calculated for a range of transition metal surfaces and applied potentials under the assumption that the activation energy barrier scales with the free energy difference in each elementary step. The most active surfaces, on top of the volcano diagrams, are Mo, Fe, Rh, and Ru, but hydrogen gas formation will be a competing reaction reducing the faradaic efficiency for ammonia production. Since the early transition metal surfaces such as Sc, Y, Ti, and Zr bind N-adatoms more strongly than H-adatoms, a significant production of ammonia compared with hydrogen gas can be expected on those metal electrodes when a bias of 1 V to 1.5 V vs. SHE is applied. Defect-free surfaces of the early transition metals are catalytically more active than their stepped counterparts.
Original languageEnglish
JournalPhysical Chemistry Chemical Physics
Publication date2012
Volume14
Issue3
Pages1235-1245
ISSN1463-9076
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 19
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 6418876