A systematic study of multiple minerals precipitation modelling in wastewater treatment

Mineral solids precipitation is important in wastewater treatment. However approaches to minerals precipitation modelling are varied, often empirical, and mostly focused on single precipitate classes. A common approach, applicable to multi-species precipitates, is needed to integrate into existing wastewater treatment models. The present study systematically tested a semi-mechanistic modelling approach, using various experimental platforms with multiple minerals precipitation. Experiments included dynamic titration with addition of sodium hydroxide to synthetic wastewater, and aeration to progressively increase pH and induce precipitation in real piggery digestate and sewage sludge digestate. The model approach consisted of an equilibrium part for aqueous phase reactions and a kinetic part for minerals precipitation. The model was fitted to dissolved calcium, magnesium, total inorganic carbon and phosphate. Results indicated that precipitation was dominated by the mineral struvite, forming together with varied and minor amounts of calcium phosphate and calcium carbonate. The model approach was noted to have the advantage of requiring a minimal number of fitted parameters, so the model was readily identifiable. Kinetic rate coefficients, which were statistically fitted, were generally in the range 0.35-11.6 h\(^{-1}\) with confidence intervals of 10-80% relative. Confidence regions for the kinetic rate coefficients were often asymmetric with model-data residuals increasing more gradually with larger coefficient values. This suggests that a large kinetic coefficient could be used when actual measured data is lacking for a particular precipitate-matrix combination. Correlation between the kinetic rate coefficients of different minerals was low, indicating that parameter values for individual minerals could be independently fitted (keeping all other model parameters constant). Implementation was therefore relatively flexible, and would be readily expandable to include other minerals.

General information

State: Published
Organisations: Department of Chemical and Biochemical Engineering, CAPEC-PROCESS, University of Queensland
Contributors: Kazadi Mbamba, C.; Tait, S.; Flores-Alsina, X.; Batstone, D. J.
Pages: 359-70
Publication date: 2015
Peer-reviewed: Yes

Publication information

Journal: Water Research
Volume: 85
ISSN (Print): 0043-1354
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 7.55 SJR 2.601 SNIP 2.358
Web of Science (2017): Impact factor 7.051
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 7.49 SJR 2.663 SNIP 2.563
Web of Science (2016): Impact factor 6.942
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 6.63 SJR 2.665 SNIP 2.482
Web of Science (2015): Impact factor 5.991
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 6.13 SJR 2.946 SNIP 2.702
Web of Science (2014): Impact factor 5.528
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 6.02 SJR 2.956 SNIP 2.676
Web of Science (2013): Impact factor 5.323
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 5.15 SJR 2.914 SNIP 2.442
Web of Science (2012): Impact factor 4.655
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 5.43 SJR 2.862 SNIP 2.355
Web of Science (2011): Impact factor 4.865
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.592 SNIP 2.192
Web of Science (2010): Impact factor 4.546
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.319 SNIP 2.224
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.073 SNIP 2.178
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.94 SNIP 2.184
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.902 SNIP 2.233
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.113 SNIP 2.334
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.209 SNIP 2.108
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.702 SNIP 1.908
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.568 SNIP 1.757
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.319 SNIP 1.69
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.399 SNIP 1.662
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.432 SNIP 1.55
Original language: English
Keywords: Equilibrium, Kinetics, Parameter estimation, Physico-chemical modelling, Precipitation, Struvite
DOIs:
10.1016/j.watres.2015.08.041
Source: FindIt
Source-ID: 2281149785
Research output: Research - peer-review ; Journal article – Annual report year: 2015