A spectral geometric model for Compton single scatter in PET based on the single scatter simulation approximation

We investigate the idealized mathematical model of single scatter in PET for a detector system possessing excellent energy resolution. The model has the form of integral transforms estimating the distribution of photons undergoing a single Compton scattering with a certain angle. The total single scatter is interpreted as the volume integral over scatter points that constitute a rotation body with a football shape, while single scattering with a certain angle is evaluated as the surface integral over the boundary of the rotation body. The equations for total and sample single scatter calculations are derived using a single scatter simulation approximation. We show that the three-dimensional slice-by-slice filtered backprojection algorithm is applicable for scatter data inversion provided that the attenuation map is assumed to be constant. The results of the numerical experiments are presented.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Department of Physics, Neutrons and X-rays for Materials Physics, Scientific Computing, Institute of Computational Mathematics and Mathematical Geophysics
Contributors: Kazantsev, I., Olsen, U. L., Poulsen, H. F., Hansen, P. C.
Number of pages: 15
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Inverse Problems
Volume: 34
Issue number: 2
Article number: 024002
ISSN (Print): 0266-5611
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.91 SJR 1.209 SNIP 1.419
Web of Science (2017): Impact factor 1.946
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.84 SJR 1.49 SNIP 1.414
Web of Science (2016): Impact factor 1.62
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.82 SJR 1.416 SNIP 1.431
Web of Science (2015): Impact factor 1.651
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.63 SJR 1.252 SNIP 1.408
Web of Science (2014): Impact factor 1.323
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.13 SJR 1.215 SNIP 1.615
Web of Science (2013): Impact factor 1.802
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.15 SJR 1.258 SNIP 1.838
Web of Science (2012): Impact factor 1.896
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.9 SJR 1.208 SNIP 1.563
Web of Science (2011): Impact factor 1.88
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.409 SNIP 1.63
Web of Science (2010): Impact factor 2.138
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.397 SNIP 1.757
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.228 SNIP 1.853
Scopus rating (2007): SJR 1.042 SNIP 1.966
Scopus rating (2006): SJR 0.924 SNIP 1.788
Scopus rating (2005): SJR 1.15 SNIP 1.936
Scopus rating (2004): SJR 0.8 SNIP 1.567
Scopus rating (2003): SJR 0.796 SNIP 1.399
Scopus rating (2002): SJR 1.112 SNIP 1.459
Scopus rating (2001): SJR 0.972 SNIP 1.499
Scopus rating (2000): SJR 0.766 SNIP 1.593
Scopus rating (1999): SJR 0.881 SNIP 1.394
Original language: English
DOIs:
10.1088/1361-6420/aaa05d
Source: FindIt
Source-ID: 2394032612
Research output: Research - peer-review > Journal article – Annual report year: 2018