A Simple Synchro – Modal Decision Support Tool for the Piraeus Container Terminal

The concept of Synchro modality is effectively an evolution of a multimodal supply chain. It integrates different transport modes and gives shippers and logistics service providers the freedom to deploy different modes of transportation in the same chain and in a flexible way so as to gain the desired outcome according to their priorities in a certain trip. Time, costs and emissions are certainly the three most relevant parameters when talking about a multimodal transportation chain. In most cases the logistics provider has set priorities to conform with, and obviously above mentioned constrains influence each other in an adverse way. With the development of ICT technologies and systems installed on board and on shore and with a simple decision support system fed with input from tracking and tracing systems or traffic monitoring systems, one can easily and flexibly plan his transportation job and maintain his set priority while in parallel keeping the remaining two parameters in control. Down times for example could be eliminated and efficiency gains could be achieved with decreased environmental footprint. The Port of Piraeus is the largest Greek seaport and one of the largest ports in the Mediterranean Sea basin. It exhibits an impressive container traffic growth rate over the last 4 years triggered by its partial privatization and a recently completed hinterland connection to the rail network, which associated the port with the South-Eastern European corridor e.g. the route Far Eastern ports – Piraeus – Prague. The current paper will present an easy to use simple tool to continuously assess even during the transportation event all the alternative modes for a given destination in terms of time cost and emissions. An analytical fully parameterized model will be the basis for this tool which will be run for the chain Shanghai - Piraeus – Prague. The overall scenario is as follows: A container ship is arriving from China to the Piraeus Container Terminal. One of its containers is destined to an inland Enterprise in Prague. The most common way for transportation to Prague is rail, but also truck could be an alternative solution and of course a combination of a Short Sea Shipping part to Thessaloniki and then truck or train to Prague. Emphasis in the calculations will be given to emissions for all the modes and relations will be shown with time and cost. The tool developed is based on the case study above, being however open architecture software it can be expanded and applied to other ports and routes. The final outcome will be an easy and user friendly tool with the possibility to alter different input parameters and receive quickly a useful decision support system for the shipper or the logistics providers. Finally there are two loops foreseen for the runs of the program. The required input parameters at each stage are either directly fed to the program if available (e.g. vessels ETA and position through GPS, VTS, ETC) or calculated if this is not the case.

General information
State: Published
Organisations: Department of Management Engineering, Management Science, Transport DTU, National Technical University of Athens, Piraeus Port Authority S.A.
Contributors: Kapetanis, G. N., Psaraftis, H. N., Spyrou, D.
Number of pages: 10
Publication date: 2016
Peer-reviewed: Yes
Event: Paper presented at 6th Transport Research Arena, Warsaw, Poland.
Keywords: Maritime transport, Multimodality, Synchro-modal transportation, Marine emissions, Transport emissions, Transport cost, Transport time, Transport IT technologies
Research output: Research - peer-review | Paper – Annual report year: 2016