A review of heat transfer enhancement techniques in plate heat exchangers

Plate heat exchangers have been widely applied in numerous industrial applications since their first commercial exploitation in the 1920s. Enhancing the thermal-hydraulic performance of plate heat exchangers is of crucial importance for the energy conversion as well as for the improvement of the system economy, through savings in the capital investment. The efficiency of a plate heat exchanger can be improved either by optimizing its geometry or using heat transfer enhancement techniques. This paper provides a comprehensive review of previous works regarding the effects of chevron corrugation geometrical parameters on the performance of plate heat exchangers, and the application of heat transfer enhancement techniques in plate heat exchangers, focusing on passive surface techniques and the use of nanofluids. The objective of the paper is not only to describe relevant studies, but also to provide an understanding of the heat transfer mechanisms governing the results, and to evaluate and compare the different heat transfer enhancement techniques. In addition, prospective directions for future research are provided. The review indicates that for the chevron-type plate heat exchanger, the chevron angle is the most influential geometrical parameter by changing the flow structures in the single-phase heat transfer; meanwhile the chevron angle has a significant influence on the heat transfer regions characterized by convection in the two-phase heat transfer. An analysis based on the performance evaluation criteria suggests that the thermal-hydraulic performances of the studies with different geometrical parameters and enhancement techniques are generally higher at low Reynold numbers. Furthermore, the review and analysis indicate that the capsule-type embossing surface and the microstructured surface with a nano- and microporous layer are the enhancement techniques that present the highest performance in single-phase and two-phase heat transfer, respectively.

General information
State: Published
Organisations: Department of Mechanical Engineering, Thermal Energy
Contributors: Zhang, J., Zhu, X., Mondejar, M. E., Haglind, F.
Pages: 305-328
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Renewable and Sustainable Energy Reviews
Volume: 101
ISSN (Print): 1364-0321
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 10.54 SJR 3.036 SNIP 3.594
Web of Science (2017): Impact factor 9.184
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 9.52 SJR 2.998 SNIP 3.501
Web of Science (2016): Impact factor 8.05
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 8.35 SJR 2.921 SNIP 3.368
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 7.79 SJR 3.03 SNIP 3.72
Web of Science (2014): Impact factor 5.901
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 7.88 SJR 2.98 SNIP 3.893
Web of Science (2013): Impact factor 5.51
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 7.24 SJR 2.734 SNIP 3.861
Web of Science (2012): Impact factor 5.627
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 7.39 SJR 2.717 SNIP 3.911
Web of Science (2011): Impact factor 6.018
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 2.338 SNIP 3.092
Web of Science (2010): Impact factor 4.595
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 2.457 SNIP 3.608
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.425 SNIP 3.173
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.001 SNIP 3.386
Scopus rating (2006): SJR 0.86 SNIP 1.704
Scopus rating (2005): SJR 0.921 SNIP 2.591
Scopus rating (2004): SJR 1.123 SNIP 2.216
Scopus rating (2003): SJR 0.795 SNIP 2.464
Scopus rating (2002): SJR 0.664 SNIP 2.331
Scopus rating (2001): SJR 0.196 SNIP 1.018
Scopus rating (2000): SJR 0.157 SNIP 1.065
Scopus rating (1999): SJR 0.207 SNIP 1.44
Original language: English
Keywords: Heat transfer enhancement, Plate heat exchanger, Thermal-hydraulic performance, Passive surface technique, Nanofluid, Chevron corrugation
DOIs:
10.1016/j.rser.2018.11.017
Source: FindIt
Source-ID: 2442037655
Research output: Research - peer-review; Journal article – Annual report year: 2019