A resource-efficient network interface supporting low latency reconfiguration of virtual circuits in time-division multiplexing networks-on-chip

This paper presents a resource-efficient time-division multiplexing network interface of a network-on-chip intended for use in a multicore platform for hard real-time systems. The network-on-chip provides virtual circuits to move data between core-local on-chip memories. In such a platform, a change of the application’s operating mode may require reconfiguration of virtual circuits that are setup by the network-on-chip. A unique feature of our network interface is the instantaneous reconfiguration between different time-division multiplexing schedules, containing sets of virtual circuits, without affecting virtual circuits that persist across the reconfiguration. The results show that the worst-case latency from triggering a reconfiguration until the new schedule is executing, is in the range of 300 clock cycles. Experiments show that new schedules can be transmitted from a single master to all slave nodes for a 16-core platform in between 500 and 3500 clock cycles. The results also show that the hardware cost for an FPGA implementation of our architecture is considerably smaller than other network-on-chips with similar reconfiguration functionalities, and that the worst-case time for a reconfiguration is smaller than that seen in functionally equivalent architectures.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Embedded Systems Engineering
Contributors: Sørensen, R. B., Pezzarossa, L., Schoeberl, M., Sparsø, J.
Pages: 1–13
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Systems Architecture
Volume: 74
ISSN (Print): 1383-7621
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 1.59 SJR 0.255 SNIP 1.121
Web of Science (2017): Impact factor 0.913
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 1.66 SJR 0.32 SNIP 1.208
Web of Science (2016): Impact factor 1.579
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 1.39 SJR 0.306 SNIP 0.995
Web of Science (2015): Impact factor 0.683
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 1.14 SJR 0.296 SNIP 1.195
Web of Science (2014): Impact factor 0.44
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 1.32 SJR 0.29 SNIP 1.318
Web of Science (2013): Impact factor 0.689
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 1.51 SJR 0.314 SNIP 1.153
Web of Science (2012): Impact factor 0.724
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 1.23 SJR 0.272 SNIP 1.109
Web of Science (2011): Impact factor 0.444