A Prospective Life Cycle Assessment (LCA) of Monomer Synthesis: Comparison of Biocatalytic and Oxidative Chemistry

Biotecnological processes are typically perceived to be greener than chemical processes. A life cycle assessment (LCA) was performed to compare the chemical and biochemical synthesis of lactones obtained by Baeyer-Villiger oxidation. The LCA is prospective (based on experiments at a small scale with primary data) because the process is at an early stage. The results show that the synthesis route has no significant effect on the climate change impact [(1.65±0.59) kg CO₂ eq. product⁻¹ vs. (1.64±0.67) kg CO₂ eq. product⁻¹]. Key process performance metrics affecting the environmental impact were evaluated by performing a sensitivity analysis. Recycling of solvents and enzyme were shown to provide an advantage to the enzymatic synthesis. Additionally, the climate change impact was decreased by 71% if renewable electricity was used. The study shows that comparative LCAs can be used to usefully support decisions at an early stage of process development.

General information
State: Accepted/In press
Organisations: PROSYS - Process and Systems Engineering Centre, KT Consortium, Department of Chemical and Biochemical Engineering, Maastricht University
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: ChemSusChem
Volume: 12
ISSN (Print): 1864-5631
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 6.86 SJR 2.538 SNIP 1.235
Web of Science (2017): Impact factor 7.411
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 6.7 SJR 2.505 SNIP 1.311
Web of Science (2016): Impact factor 7.226
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 7.33 SJR 2.53 SNIP 1.424
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 7.97 SJR 2.864 SNIP 1.663
Web of Science (2014): Impact factor 7.657
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 6.79 SJR 2.561 SNIP 1.46
Web of Science (2013): Impact factor 7.117
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 6.72 SJR 3.054 SNIP 1.553
Web of Science (2012): Impact factor 7.475
ISI indexed (2012): ISI indexed yes
Scopus rating (2011): CiteScore 5.53 SJR 2.759 SNIP 1.497
Web of Science (2011): Impact factor 6.827
ISI indexed (2011): ISI indexed no