A principle for ideal torus knots

Using bent-helix embeddings, we investigate simple and knotted torus windings that are made of tubes of finite thickness. Knots which have the shortest rope length are often denoted as ideal structures. Conventionally, the ideal structures are found by rope shortening routines. It is shown that alternatively they can be directly determined as maximally twisted structures. In many cases these structures are also structures with zero strain-twist coupling, i.e. structures that neither rotate one or the other way under strain. We use this principle to implement rapid numerical calculations of the ideal structures and subsequently quantify them by their aspect ratio. The results are compared with the aspect ratios of biological torus molecules.

General information

State: Published
Organisations: Department of Micro- and Nanotechnology, Theoretical Biophysics
Contributors: Olsen, K. W., Bohr, J.
Pages: 30002
Publication date: 2013
Peer-reviewed: Yes

Publication information

Journal: Europhysics Letters
Volume: 103
Issue number: 3
ISSN (Print): 0295-5075
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 1.24 SJR 0.498 SNIP 0.569
Web of Science (2017): Impact factor 1.834
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 1.18 SJR 0.549 SNIP 0.603
Web of Science (2016): Impact factor 1.957
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 1.12 SJR 0.625 SNIP 0.593
Web of Science (2015): Impact factor 1.963
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 1.04 SJR 0.555 SNIP 0.579
Web of Science (2014): Impact factor 2.095
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 1 SJR 0.542 SNIP 0.539
Web of Science (2013): Impact factor 2.269
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 1.28 SJR 0.816 SNIP 0.592
Web of Science (2012): Impact factor 2.26
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 1.86 SJR 1.389 SNIP 0.758
Web of Science (2011): Impact factor 2.171