A numerical shoreline model for shorelines with large curvature

This paper presents a new numerical model for shoreline change which can be used to model the evolution of shorelines with large curvature. The model is based on a one-line formulation in terms of coordinates which follow the shape of the shoreline, instead of the more common approach where the two orthogonal horizontal directions are used. The volume error in the sediment continuity equation which is thereby introduced is removed through an iterative procedure. The model treats the shoreline changes by computing the sediment transport in a 2D coastal area model, and then integrating the sediment transport field across the coastal profile to obtain the longshore sediment transport variation along the shoreline. The model is used to compute the evolution of a shoreline with a 90° change in shoreline orientation; due to this drastic change in orientation a migrating shoreline spit develops in the model. The dimensions of the spits evolving in the model compare favorably to previous model results and to field observation of the Skaw Spit in the north of Denmark.

General information
Publication status: Published
Organisations: Department of Mechanical Engineering, Fluid Mechanics, Coastal and Maritime Engineering
Contributors: Kærgaard, K. H., Fredsøe, J.
Pages: 19-32
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Coastal Engineering
Volume: 74
ISSN (Print): 0378-3839
Ratings:
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.58 SJR 1.818 SNIP 2.338
Web of Science (2013): Impact factor 2.062
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Original language: English
Keywords: Shoreline model, Numerical model, Longshore sediment transport, Skagen, The Skaw Spit
DOIs:
10.1016/j.coastaleng.2012.11.011
Source: dtu
Source-ID: n:oai:DTIC-ART:elsevier/378173355::25599
Research output: Contribution to journal › Journal article – Annual report year: 2013 › Research › peer-review