A numerical shoreline model for shorelines with large curvature

This paper presents a new numerical model for shoreline change which can be used to model the evolution of shorelines with large curvature. The model is based on a one-line formulation in terms of coordinates which follow the shape of the shoreline, instead of the more common approach where the two orthogonal horizontal directions are used. The volume error in the sediment continuity equation which is thereby introduced is removed through an iterative procedure. The model treats the shoreline changes by computing the sediment transport in a 2D coastal area model, and then integrating the sediment transport field across the coastal profile to obtain the longshore sediment transport variation along the shoreline. The model is used to compute the evolution of a shoreline with a 90° change in shoreline orientation; due to this drastic change in orientation a migrating shoreline spit develops in the model. The dimensions of the spits evolving in the model compare favorably to previous model results and to field observation of the Skaw Spit in the north of Denmark.

General information
State: Published
Organisations: Department of Mechanical Engineering, Fluid Mechanics, Coastal and Maritime Engineering
Contributors: Kærgaard, K. H., Fredsøe, J.
Pages: 19-32
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Coastal Engineering
Volume: 74
ISSN (Print): 0378-3839
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.28 SJR 1.767 SNIP 1.818
Web of Science (2017): Impact factor 2.674
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.44 SJR 2.133 SNIP 2.24
Web of Science (2016): Impact factor 3.221
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.9 SJR 1.877 SNIP 2.074
Web of Science (2015): Impact factor 2.841
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.55 SJR 1.804 SNIP 2.087
Web of Science (2014): Impact factor 2.428
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.58 SJR 1.654 SNIP 2.234
Web of Science (2013): Impact factor 2.062
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.21 SJR 1.931 SNIP 2.159
Web of Science (2012): Impact factor 2.239
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.43 SJR 1.522 SNIP 2.476
Web of Science (2011): Impact factor 1.757
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2