A novel porcine model of implant associated osteomyelitis: a comprehensive analysis of local, regional and systemic response - DTU Orbit (06/01/2019)

A novel porcine model of implant associated osteomyelitis: a comprehensive analysis of local, regional and systemic response

Pigs are favorable experimental animals for infectious diseases in humans. However, implant associated osteomyelitis (IAO) models in pigs have only been evaluated using high-inoculum infection (>10⁸ CFU) models in 1975 and 1993.

Therefore, the aim of this paper was to present a new low inoculum porcine model of human IAO based on 42 experimental pigs. The model was created by drilling an implant cavity in the tibial bone followed by insertion of a small steel implant and simultaneous inoculation of Staphylococcus aureus bacteria (n=32) or saline (n=10). The infected pigs were either inoculated with 10⁴ CFU (n=26) or 10² and 10³ CFU (n=6). All animals were euthanized five days after insertion of implants. Pigs receiving the high-inoculum infections showed a significantly higher volume of bone lesion, number of neutrophils around the implant, concentrations of acute phase proteins in serum and enlargement of regional lymph nodes. A positive correlation was present between a high number of surrounding neutrophils and high values of all other parameters. Furthermore, a threshold of 40 neutrophils per 10 high power fields for the histopathological diagnosis of high grade IAO was defined. In conclusion: this paper describes a novel low-inoculum S. aureus porcine model of IAO which was demonstrated to be reliable, reproducible and discriminative to human IAO, and represents a requested and valuable tool in orthopedic research. This article is protected by copyright. All rights reserved.