A novel operation cost optimization system for mix-burning coal slime circulating fluidized bed boiler unit - DTU Orbit (31/01/2019)

A novel operation cost optimization system for mix-burning coal slime circulating fluidized bed boiler unit

At present, mix-burning of coal slime in a circulating fluidized bed boiler is an effective method to cleanly utilize low-price coal slime. This study proposed a data-based operation cost optimization system for mix-burning coal slime CFB boiler unit that instructs operators to more scientifically adjust the operation parameters. Based on actual operating data from a 300MW CFB unit, least squares support vector machine was used to build the steady-state operation cost model, and partial mutual information variable selection method was applied to choose the input variables and lower the model complexity. Based on the pre-built operation cost model, the genetic algorithm was used to establish an offline expert knowledge database within the safety threshold range. The utility cost was introduced into association rule measurement standards to improve the traditional fuzzy association rules mining. The improved fuzzy association rule mining was used to extract the associations between the unit load and the optimal operation parameters from the off-line expert knowledge database after receiving the load instruction, so as to achieve fast instruct on online operation optimization. Results showed that the proposed economic optimization system performances were better than traditional methods and can improve operation of the unit being studied.

General information
State: Published
Organisations: KT Consortium, PROSYS - Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, North China Electric Power University
Contributors: Zhang, W., Liu, J., Gao, M., Huusom, J. K.
Pages: 620-631
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Applied Thermal Engineering
Volume: 148
ISSN (Print): 1359-4311
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.14 SJR 1.505 SNIP 1.837
Web of Science (2017): Impact factor 3.771
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.78 SJR 1.438 SNIP 1.851
Web of Science (2016): Impact factor 3.444
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.32 SJR 1.683 SNIP 1.884
Web of Science (2015): Impact factor 3.043
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.16 SJR 1.539 SNIP 2.187
Web of Science (2014): Impact factor 2.739
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.31 SJR 1.466 SNIP 2.469
Web of Science (2013): Impact factor 2.624
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.7 SJR 1.492 SNIP 2.422
Web of Science (2012): Impact factor 2.127