A Novel Low-Loss Diamond-Core Porous Fiber for Polarization Maintaining Terahertz Transmission

We report on the numerical design optimization of a new kind of relatively simple porous-core photonic crystal fiber (PCF) for terahertz (THz) waveguiding. A novel twist is introduced in the regular hexagonal PCF by including a diamond-shaped porous-core inside the hexagonal cladding. The numerical results obtained from an efficient finite-element method, which confirms a high birefringence of the order 10^{-2} and low effective material loss of 0.07 cm^{-1} at 0.7-THz operating frequency. The proposed PCF is anticipated to be useful in polarization sensitive THz appliances.

General information
State: Published
Organisations: Department of Photonics Engineering, Ultrafast Infrared and Terahertz Science, Fiber Sensors and Supercontinuum Generation, Rajshahi University of Engineering and Technology
Contributors: Islam, R., Habib, S., Hasanuzzaman, G. K. M., Rana, S., Sadath, M. A., Markos, C.
Pages: 1537-1540
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: I E E E Photonics Technology Letters
Volume: 28
Issue number: 14
ISSN (Print): 1041-1135
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.84 SJR 0.961 SNIP 1.25
Web of Science (2017): Impact factor 2.446
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.52 SJR 0.989 SNIP 1.224
Web of Science (2016): Impact factor 2.375
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.62 SJR 1.19 SNIP 1.266
Web of Science (2015): Impact factor 1.945
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.78 SJR 1.421 SNIP 1.583
Web of Science (2014): Impact factor 2.11
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.95 SJR 1.495 SNIP 1.548
Web of Science (2013): Impact factor 2.176
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.46 SJR 1.647 SNIP 1.694
Web of Science (2012): Impact factor 2.038
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.48 SJR 1.539 SNIP 2.04
Web of Science (2011): Impact factor 2.191
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.457 SNIP 1.678
Web of Science (2010): Impact factor 1.989
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.721 SNIP 1.913
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.975 SNIP 1.864
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.224 SNIP 1.678
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 2.012 SNIP 1.869
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.882 SNIP 2.411
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 3.092 SNIP 2.689
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 3.17 SNIP 2.436
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 2.97 SNIP 2.1
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 3.43 SNIP 1.656
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 2.636 SNIP 1.199
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 2.564 SNIP 1.279
Original language: English
Keywords: Electrical and Electronic Engineering, Atomic and Molecular Physics, and Optics, Electronic, Optical and Magnetic Materials, Birefringence, Photonic crystal fiber, Porous-core, Terahertz wave guidance, Crystal whiskers, Finite element method, Nonlinear optics, Numerical methods, Polarization, Terahertz waves, Effective materials, High birefringence, Numerical results, Operating frequency, Polarization maintaining, Polarization sensitive, Terahertz transmission, Photonic crystal fibers
Electronic versions:
Islam_diamond_2016.pdf
DOIs:
10.1109/LPT.2016.2550205

Bibliographical note
(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
Source: FindIt
Source-ID: 2303408581
Research output: Research - peer-review › Journal article – Annual report year: 2016