A novel approach to probe host-pathogen interactions of bovine digital dermatitis, a model of a complex polymicrobial infection

Polymicrobial infections represent a great challenge for the clarification of disease etiology and the development of comprehensive diagnostic or therapeutic tools, particularly for fastidious and difficult-to-cultivate bacteria. Using bovine digital dermatitis (DD) as a disease model, we introduce a novel strategy to study the pathogenesis of complex infections. The strategy combines meta-transcriptomics with high-density peptide-microarray technology to screen for in vivo-expressed microbial genes and the host antibody response at the site of infection. Bacterial expression patterns supported the assumption that treponemes were the major DD pathogens but also indicated the active involvement of other phyla (primarily Bacteroidetes). Bacterial genes involved in chemotaxis, flagellar synthesis and protection against oxidative and acidic stress were among the major factors defining the disease. The extraordinary diversity observed in bacterial expression, antigens and host antibody responses between individual cows pointed toward microbial variability as a hallmark of DD. Persistence of infection and DD reinfection in the same individual is common; thus, high microbial diversity may undermine the host's capacity to mount an efficient immune response and maintain immunological memory towards DD. The common antigenic markers identified here using a high-density peptide microarray address this issue and may be useful for future preventive measures against DD.

General information
State: Published
Organisations: Department of Systems Biology, Center for Biological Sequence Analysis, National Veterinary Institute, Section for Bacteriology, Pathology and Parasitology, Metagenomics, Hospital of Southern Jutland, Schafer-N ApS
Number of pages: 13
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: BMC Genomics
Volume: 17
Issue number: 1
Article number: 987
ISSN (Print): 1471-2164
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.08 SJR 2.11 SNIP 1.151
Web of Science (2017): Impact factor 3.73
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.05 SJR 2.163 SNIP 1.096
Web of Science (2016): Impact factor 3.729
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.3 SJR 2.348 SNIP 1.159
Web of Science (2015): Impact factor 3.867
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.18 SJR 2.327 SNIP 1.199
Web of Science (2014): Impact factor 3.986
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.39 SJR 2.195 SNIP 1.188
Web of Science (2013): Impact factor 4.041
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1