A non-linear material interpolation for design of metallic nano-particles using topology optimization

This paper discusses a non-linear bi-material interpolation scheme for the relative electric permittivity, ε, through the refractive index and extinction coefficient. The scheme is tailored for density-based topology optimization of metallic micro- and nano-structures, in electromagnetic problems in the optical wavelength regime. The scheme is shown to exhibit superior properties in the ultraviolet to low infrared wavelength regime, compared to simple linear and inverse interpolation schemes for used in the literature. The superior properties are demonstrated with optimization examples and a physical motivation is provided. Finally, the capability of the scheme is demonstrated by designing a nano-scale Ag antenna-strip providing approximately a 1200 fold spatially-localized enhancement of the electric energy, corresponding to a more than 600% performance improvement over a topology optimized reference design from the literature.

General information
State: Published
Organisations: Department of Mechanical Engineering, Solid Mechanics, Aarhus University
Contributors: Christiansen, R. E., Vester-Petersen, J., Madsen, S. P., Sigmund, O.
Pages: 23-39
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Computer Methods in Applied Mechanics and Engineering
Volume: 343
ISSN (Print): 0045-7825
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): SJR 2.883 SNIP 2.033
Web of Science (2017): Impact factor 4.441
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.31 SJR 2.691 SNIP 1.945
Web of Science (2016): Impact factor 3.949
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.91 SJR 2.728 SNIP 2.104
Web of Science (2015): Impact factor 3.467
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.41 SJR 2.381 SNIP 2.1
Web of Science (2014): Impact factor 2.959
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.5 SJR 3.015 SNIP 2.227
Web of Science (2013): Impact factor 2.626
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.04 SJR 2.457 SNIP 2.236
Web of Science (2012): Impact factor 2.617
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.03 SJR 2.592 SNIP 1.964
Web of Science (2011): Impact factor 2.651
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes