A near full-length open reading frame next generation sequencing assay for genotyping and identification of resistance-associated variants in hepatitis C virus

BACKGROUND: The current treatment options for hepatitis C virus (HCV), based on direct acting antivirals (DAA), are dependent on virus genotype and previous treatment experience. Treatment failures have been associated with detection of resistance-associated substitutions (RASs) in the DAA targets of HCV, the NS3, NS5A and NS5B proteins. OBJECTIVE: To develop a next generation sequencing based method that provides genotype and detection of HCV NS3, NS5A, and NS5B RASs without prior knowledge of sample genotype. STUDY DESIGN: In total, 101 residual plasma samples from patients with HCV covering 10 different viral subtypes across 4 genotypes with viral loads of 3.84-7.61 Log IU/mL were included. All samples were de-identified and consequently prior treatment status for patients was unknown. Almost full open reading frame amplicons (~9kb) were generated using RT-PCR with a single primer set. The resulting amplicons were sequenced with high throughput sequencing and analysed using an in-house developed script for detecting RASs. RESULTS: The method successfully amplified and sequenced 94% (95/101) of samples with an average coverage of 14,035; four of six failed samples were genotype 4a. Samples analysed twice yielded reproducible nucleotide frequencies across all sites. RASs were detected in 21/95 (22%) samples at a 15% threshold. The method identified one patient infected with two genotype 2b variants, and the presence of subgenomic deletion variants in 8 (8.4%) of 95 successfully sequenced samples. CONCLUSIONS: The presented method may provide identification of HCV genotype, RASs detection, and detect multiple HCV infection without prior knowledge of sample genotype.

General information
State: Published
Organisations: Department of Bio and Health Informatics, Disease Intelligence and Molecular Evolution, Copenhagen University Hospital, University of Copenhagen, Roskilde University
Pages: 49-56
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Clinical Virology
Volume: 105
ISSN (Print): 1386-6532
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.79 SJR 1.609 SNIP 1.011
Web of Science (2017): Impact factor 3.101
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.79 SJR 1.705 SNIP 1.115
Web of Science (2016): Impact factor 3.051
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.53 SJR 1.509 SNIP 1.042
Web of Science (2015): Impact factor 2.647
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.87 SJR 1.515 SNIP 1.143
Web of Science (2014): Impact factor 3.016
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.19 SJR 1.877 SNIP 1.339
Web of Science (2013): Impact factor 3.466
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3 SJR 1.583 SNIP 1.182
Web of Science (2012): Impact factor 3.287
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.61 SJR 1.64 SNIP 1.42