A multi-resolution envelope-power based model for speech intelligibility

The speech-based envelope power spectrum model (sEPSM) presented by Jørgensen and Dau ([2011]. J. Acoust. Soc. Am. 130, 1475-1487) estimates the envelope power signal-to-noise ratio (SNRenv) after modulation-frequency selective processing. Changes in this metric were shown to account well for changes of speech intelligibility for normal-hearing listeners in conditions with additive stationary noise, reverberation, and nonlinear processing with spectral subtraction. In the latter condition, the standardized speech transmission index ([2003]. IEC 60268-16) fails. However, the sEPSM is limited to conditions with stationary interferers, due to the long-term integration of the envelope power, and cannot account for increased intelligibility typically obtained with fluctuating maskers. Here, a multi-resolution version of the sEPSM is presented where the SNRenv is estimated in temporal segments with a modulation-filter dependent duration. The multi-resolution sEPSM is demonstrated to account for intelligibility obtained in conditions with stationary and fluctuating interferers, and noisy speech distorted by reverberation or spectral subtraction. The results support the hypothesis that the SNRenv is a powerful objective metric for speech intelligibility prediction. © 2013 Acoustical Society of America.

General information
Publication status: Published
Organisations: Department of Electrical Engineering, Hearing Systems, University of Oldenburg
Contributors: Jørgensen, S., Ewert, S. D., Dau, T.
Pages: 436-446
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Journal of the Acoustical Society of America
Volume: 134
Issue number: 1
ISSN (Print): 0001-4966
Ratings:
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2 SJR 0.758 SNIP 1.979
Web of Science (2013): Impact factor 1.555
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Original language: English
Keywords: Audition, Modulation, Reverberation, Signal to noise ratio, Speech intelligibility, Acoustic noise, Hearing
DOIs:
10.1121/1.4807563
Source: dtu
Source-ID: n:oat:DTIC-ART:compendex/390006308::30905
Research output: Contribution to journal › Journal article – Annual report year: 2012 › Research › peer-review