A molecular genetic toolbox for Yarrowia lipolytica

Background: Yarrowia lipolytica is an ascomycete yeast used in biotechnological research for its abilities to secrete high concentrations of proteins and accumulate lipids. Genetic tools have been made in a variety of backgrounds with varying similarity to a comprehensively sequenced strain. Results: We have developed a set of genetic and molecular tools in order to expand capabilities of Y. lipolytica for both biological research and industrial bioengineering applications. In this work, we generated a set of isogenic auxotrophic strains with decreased non-homologous end joining for targeted DNA incorporation. Genome sequencing, assembly, and annotation of this genetic background uncovers previously unidentified genes in Y. lipolytica. To complement these strains, we constructed plasmids with Y. lipolytica-optimized superfolder GFP for targeted overexpression and fluorescent tagging. We used these tools to build the "Yarrowia lipolytica Cell Atlas," a collection of strains with endogenous fluorescently tagged organelles in the same genetic background, in order to define organelle morphology in live cells. Conclusions: These molecular and isogenetic tools are useful for live assessment of organelle-specific protein expression, and for localization of lipid biosynthetic enzymes or other proteins in Y. lipolytica. This work provides the Yarrowia community with tools for cell biology and metabolism research in Y. lipolytica for further development of biofuels and natural products.

General information
Publication status: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Yeast Cell Factories, United States Department of Energy, Pacific Northwest National Laboratory, Chalmers University of Technology
Number of pages: 22
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Biotechnology for Biofuels
Volume: 10
Issue number: 2
ISSN (Print): 1754-6834
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.93 SJR 1.899 SNIP 1.587
Web of Science (2017): Impact factor 5.497
Web of Science (2017): Indexed yes
Original language: English
Keywords: Biotechnology, Applied Microbiology and Biotechnology, Renewable Energy, Sustainability and the Environment, Energy (all), Management, Monitoring, Policy and Law, Genome sequence, GFP localization, Hygromycin B, Isogenic, Organelle labeling, Overexpression plasmid, Protein tagging, Superfolder GFP, Tools, Yarrowia lipolytica, Cytology, Genes, Proteins, Genome sequences, Hygromycin, Over-expression, Industrial research, Yarrowia
Electronic versions:
A_molecular_genetic_toolbox.pdf

DOIs:
Source: FindIt
Source-ID: 2350679253

Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review