A microfluidic platform for the rapid determination of distribution coefficients by gravity assisted droplet-based liquid-liquid extraction

The determination of pharmacokinetic properties of drugs, such as the distribution coefficient, D, is a crucial measurement in pharmaceutical research. Surprisingly, the conventional (gold standard) technique used for D measurements, the shake-flask method, is antiquated and unsuitable for the testing of valuable and scarce drug candidates. Herein we present a simple microfluidic platform for the determination of distribution coefficients using droplet-based liquid-liquid extraction. For simplicity, this platform makes use of gravity to enable phase separation for analysis and is 48 times faster and uses 99% less reagents than performing an equivalent measurement using the shake-flask method. Furthermore, the D measurements achieved in our platform are in good agreement with literature values measured using traditional shake-flask techniques. Since D is affected by volume ratios, we use the apparent acid dissociation constant, pK', as a proxy for inter-system comparison. Our platform determines a pK' value of 7.24 ± 0.15, compared to 7.25 ± 0.58 for the shake-flask method in our hands and 7.21 for the shake-flask method in literature. Devices are fabricated using injection moulding, the batch-wise fabrication time is less than 2 minutes per device (at a cost of 1 USD per device) and the inter-device reproducibility is high.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, BioLabChip, Swiss Federal Institute of Technology Zurich
Number of pages: 6
Pages: 6265-6270
Publication date: 2015
Peer-reviewed: Yes
Early online date: 2015

Publication information
Journal: Analytical Chemistry
Volume: 87
Issue number: 12
ISSN (Print): 0003-2700
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 6.24
Web of Science (2017): Impact factor 6.042
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 6.08
Web of Science (2016): Impact factor 6.32
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 6
Web of Science (2015): Impact factor 5.886
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 5.79
Web of Science (2014): Impact factor 5.636
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 6.01
Web of Science (2013): Impact factor 5.825
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 5.8
Web of Science (2012): Impact factor 5.695
ISI indexed (2012): ISI indexed yes
Bottles, Dissociation, Drops, Injection molding, Liquids, Microfluidics, Phase separation, Solvent extraction, Acid dissociation constants, Distribution coefficient, Equivalent measurement, Liquid-liquid extraction, Microfluidic platforms, Pharmaceutical research, Pharmacokinetic properties, Shake-flask method, Extraction