A Methodology for Off-line Evaluation of New Environmentally Friendly Tribo-systems for Sheet Metal Forming - DTU Orbit (14/01/2019)

A Methodology for Off-line Evaluation of New Environmentally Friendly Tribo-systems for Sheet Metal Forming

Increasing focus on environmental issues in industrial production has urged sheet stamping companies to look for new tribo-systems in order to substitute hazardous lubricants such as chlorinated paraffin oils. Production testing of new lubricants is, however, costly and makes industry reluctant towards testing alternative solutions. The present paper presents a methodology for off-line testing of new tribo-systems based on numerical modelling of production process as well as laboratory test to adjust the latter combined with testing of selected tribo-systems on a new automatic sheet-tribo-tester emulating typical sheet forming production processes. Final testing of the tribo-systems in production verifies the methodology. © 2013 CIRP.

General information
State: Published
Organisations: Department of Mechanical Engineering, Manufacturing Engineering
Contributors: Ceron, E., Bay, N.
Pages: 231–234
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: CIRP Annals - Manufacturing Technology
Volume: 62
ISSN (Print): 0007-8506
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.09 SJR 2.034 SNIP 2.811
Web of Science (2017): Impact factor 3.333
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.93 SJR 2.055 SNIP 3.158
Web of Science (2016): Impact factor 2.893
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.83 SJR 2.086 SNIP 3.294
Web of Science (2015): Impact factor 2.492
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.39 SJR 3.123 SNIP 3.992
Web of Science (2014): Impact factor 2.542
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.87 SJR 2.598 SNIP 3.818
Web of Science (2013): Impact factor 2.541
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.04 SJR 2.088 SNIP 4.156
Web of Science (2012): Impact factor 2.251
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.81 SJR 2.117 SNIP 3.46
Web of Science (2011): Impact factor 1.708