A methodological approach to the design of optimising control strategies for sewer systems
- DTU Orbit (16/01/2019)

A methodological approach to the design of optimising control strategies for sewer systems

This study focuses on designing an optimisation based control for sewer system in a methodological way and linking it to a regulatory control. Optimisation based design is found to depend on proper choice of a model, formulation of objective function and tuning of optimisation parameters. Accordingly, two novel optimisation configurations are developed, where the optimisation either acts on the actuators or acts on the regulatory control layer. These two optimisation designs are evaluated on a sub-catchment of the sewer system in Copenhagen, and found to perform better than the existing control; a rule based expert system. On the other hand, compared with a regulatory control technique designed earlier in Mollerup et al. (2015), the optimisation showed similar performance with respect to minimising overflow volume. Hence for operation of small sewer systems, regulatory control strategies can offer promising potential and should be considered along more advanced strategies when identifying novel solutions.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, CAPEC-PROCESS, Department of Environmental Engineering, Urban Water Systems
Contributors: Mollerup, A. L., Mikkelsen, P. S., Sin, G.
Pages: 103-115
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Environmental Modelling & Software
Volume: 83
ISSN (Print): 1364-8152
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.77 SJR 1.963 SNIP 1.957
Web of Science (2017): Impact factor 4.177
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.8 SJR 1.986 SNIP 2.105
Web of Science (2016): Impact factor 4.404
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.67 SJR 2.078 SNIP 2.144
Web of Science (2015): Impact factor 4.207
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 5.04 SJR 2.077 SNIP 2.466
Web of Science (2014): Impact factor 4.42
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.8 SJR 2.035 SNIP 2.428
Web of Science (2013): Impact factor 4.538
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.69 SJR 1.833 SNIP 2.009
Web of Science (2012): Impact factor 3.476
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.52 SJR 1.636 SNIP 2.056
Web of Science (2011): Impact factor 3.114
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.694 SNIP 2.25
Web of Science (2010): Impact factor 2.871
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.34 SNIP 1.969
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.16 SNIP 1.885
Scopus rating (2007): SJR 1.133 SNIP 1.915
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.974 SNIP 1.736
Scopus rating (2005): SJR 0.939 SNIP 1.627
Scopus rating (2004): SJR 0.473 SNIP 1.143
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.48 SNIP 1.129
Scopus rating (2002): SJR 0.4 SNIP 0.806
Scopus rating (2001): SJR 0.366 SNIP 0.652
Scopus rating (2000): SJR 0.244 SNIP 0.53
Scopus rating (1999): SJR 0.251 SNIP 0.509
Original language: English
Keywords: Sewer system control, Methodology, Optimisation, Regulatory control, Benchmarking, Control hierarchy
DOI: 10.1016/j.envsoft.2016.05.004
Research output: Research - peer-review › Journal article – Annual report year: 2016