A method to investigate the biomechanical alterations in Perthes’ disease by hip joint contact modeling - DTU Orbit (31/12/2018)

A method to investigate the biomechanical alterations in Perthes’ disease by hip joint contact modeling

Perthes’ disease is a destructive hip joint disorder characterized by malformation of the femoral head in young children. While the morphological changes have been widely studied, the biomechanical effects of these changes still need to be further elucidated. The objective of this study was to develop a method to investigate the biomechanical alterations in Perthes’ disease by finite element (FE) contact modeling using MRI. The MRI data of a unilateral Perthes’ case was obtained to develop the three-dimensional FE model of the hip joint. The stress and contact pressure patterns in the unaffected hip were well distributed. Elevated concentrations of stress and contact pressure were found in the Perthes’ hip. The highest femoral cartilage von Mises stress 3.9 MPa and contact pressure 5.3 MPa were found in the Perthes’ hip, whereas 2.4 MPa and 4.9 MPa in the healthy hip, respectively. The healthy bone in the femoral head of the Perthes’ hip carries additional loads as indicated by the increase of stress levels around the necrotic-healthy bone interface. Identifying the biomechanical changes, such as the location of stress and contact pressure concentrations, is a prerequisite for the preoperative planning to obtain stress relief for the highly stressed areas in the malformed hip. This single-patient study demonstrated that the biomechanical alterations in Perthes’ disease can be evaluated individually by patient-specific finite element contact modeling using MRI. A multi-patient study is required to test the strength of the proposed method as a pre-surgery planning tool.

General information
State: Published
Organisations: Department of Electrical Engineering, Biomedical Engineering, Department of Wind Energy, Composites Mechanics and Materials Mechanics, Hvidovre Hospital
Pages: 443–456
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Bio-Medical Materials and Engineering
Volume: 28
Issue number: 4
ISSN (Print): 0959-2989
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 0.99 SJR 0.298 SNIP 0.524
Web of Science (2017): Impact factor 0.872
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.81 SJR 0.27 SNIP 0.445
Web of Science (2016): Impact factor 0.7
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.99 SJR 0.334 SNIP 0.735
Web of Science (2015): Impact factor 0.988
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.94 SJR 0.292 SNIP 0.522
Web of Science (2014): Impact factor 1.091
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.98 SJR 0.353 SNIP 0.557
Web of Science (2013): Impact factor 0.847
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.4 SJR 0.437 SNIP 0.723
Web of Science (2012): Impact factor 1.087
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.31 SJR 0.434 SNIP 0.589
Web of Science (2011): Impact factor 1.225
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.406 SNIP 0.336