A method to characterize the roughness of 2-D line features: recrystallization boundaries

A method to characterize the roughness of 2-D line features: recrystallization boundaries

A method is presented, which allows quantification of the roughness of nonplanar boundaries of objects for which the neutral plane is not known. The method provides quantitative descriptions of both the local and global characteristics. How the method can be used to estimate the sizes of rough features and local curvatures is also presented. The potential of the method is illustrated by quantification of the roughness of two recrystallization boundaries in a pure Al specimen characterized by scanning electron microscopy.

General information
State: Published
Organisations: Department of Wind Energy, Materials science and characterization, Department of Applied Mathematics and Computer Science, Image Analysis & Computer Graphics
Contributors: Sun, J., Zhang, Y., Dahl, A. B., Conradsen, K., Juul Jensen, D.
Pages: 313–321
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Microscopy
Volume: 265
Issue number: 3
ISSN (Print): 0022-2720
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Web of Science (2017): Impact factor 1.692
Scopus rating (2017): CiteScore 1.85 SJR 0.728 SNIP 0.94
Web of Science (2017): Impact factor 1.693
Web of Science (2016): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.9 SJR 0.746 SNIP 0.841
Web of Science (2016): Impact factor 1.692
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.37 SJR 0.962 SNIP 1.095
Web of Science (2015): Impact factor 2.136
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.41 SJR 1.067 SNIP 1.339
Web of Science (2014): Impact factor 2.331
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.96 SJR 0.749 SNIP 1.051
Web of Science (2013): Impact factor 2.15
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.84 SJR 0.764 SNIP 1.276
Web of Science (2012): Impact factor 1.633
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.67 SJR 0.873 SNIP 0.918
Web of Science (2011): Impact factor 1.631
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.962 SNIP 0.963
Web of Science (2010): Impact factor 1.872
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.786 SNIP 0.881
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.737 SNIP 1.034
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.968 SNIP 1.04
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.068 SNIP 1.128
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.172 SNIP 1.146
Scopus rating (2004): SJR 1.202 SNIP 1.24
Scopus rating (2003): SJR 1.149 SNIP 1.392
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.093 SNIP 1.105
Scopus rating (2001): SJR 1.021 SNIP 1.241
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.712 SNIP 1.13
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.833 SNIP 0.948
Original language: English
Keywords: Area integral invariant, Boundary, Curvature, Electron backscatter diffraction, Recrystallization, Roughness
DOIs:
10.1111/jmi.12501
Source: FindIt
Source-ID: 2349352607
Research output: Research - peer-review › Journal article – Annual report year: 2016