A Mathematical Model for Dynamic Simulation of Anaerobic Digestion of Complex Substrates: Focusing on Ammonia Inhibition

A mathematical model for anaerobic degradation of complex organic material, such as manure, has been developed. The model includes an enzymatic hydrolytic step and four bacterial steps and involves 12 chemical compounds. The model focuses on ammonia inhibition and includes a detailed description of pH and temperature characteristics in order to accurately simulate free ammonia concentration. Free ammonia and acetate constitute the primary modulating factors in the model. The model has been applied for the simulation of digestion of cattle manure in continuously stirred tank reactors (CSTRs), and results compare favorably with experimental data. © 1993 John Wiley & Sons, Inc. Key words: anaerobic digestion ammonia inhibition manure mathematical model.

General information
State: Published
Organisations: Residual Resource Engineering, Department of Environmental Engineering, Department of Biotechnology, Technical University of Denmark
Contributors: Angelidaki, I., Ellegaard, L., Ahring, B. K.
Pages: 159-166
Publication date: 1993
Peer-reviewed: Yes

Publication information
Journal: Biotechnology and Bioengineering (Print)
Volume: 42
ISSN (Print): 0006-3592
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.07 SJR 1.372 SNIP 1.186
Web of Science (2017): Impact factor 3.952
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.14 SJR 1.447 SNIP 1.178
Web of Science (2016): Impact factor 4.481
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.44 SJR 1.632 SNIP 1.355
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.16 SJR 1.612 SNIP 1.395
Web of Science (2014): Impact factor 4.126
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.44 SJR 1.637 SNIP 1.427
Web of Science (2013): Impact factor 4.164
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.04 SJR 1.62 SNIP 1.364
Web of Science (2012): Impact factor 3.648
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4.08 SJR 1.668 SNIP 1.481
Web of Science (2011): Impact factor 3.946