A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults -
DTU Orbit (25/11/2018)

A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults

Adherence to a low-gluten diet has become increasingly common in parts of the general population. However, the effects of reducing gluten-rich food items including wheat, barley and rye cereals in healthy adults are unclear. Here, we undertook a randomised, controlled, cross-over trial involving 60 middle-aged Danish adults without known disorders with two 8-week interventions comparing a low-gluten diet (2g gluten per day) and a high-gluten diet (18g gluten per day), separated by a washout period of at least six weeks with habitual diet (12g gluten per day). We find that, in comparison with a high-gluten diet, a low-gluten diet induces moderate changes in the intestinal microbiome, reduces fasting and postprandial hydrogen exhalation, and leads to improvements in self-reported bloating. These observations suggest that most of the effects of a low-gluten diet in non-coeliac adults may be driven by qualitative changes in dietary fibres.

General information
State: Published
Organisations: Metagenomics, Department of Bio and Health Informatics, National Food Institute, Research Group for Gut Microbiology and Immunology, Research Group for Analytical Food Chemistry, Department of Chemical and Biochemical Engineering, Disease Systems Immunology, Department of Biotechnology and Biomedicine, Disease Intelligence and Molecular Evolution, University of Copenhagen, KU Leuven, University of Southern Denmark, Bispebjerg Hospital HS, Copenhagen University Hospital, Statens Serum Institut, Chalmers University of Technology, University of Auckland, Rigshospitalet, Research Centre for Prevention and Health, Capital Region of Denmark, Clinical-Microbiomics ApS, Technical University of Denmark
Number of pages: 13
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Nature Communications
Volume: 9
Issue number: 1
Article number: 4630
ISSN (Print): 2041-1723
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 12.41 SJR 6.582 SNIP 2.912
Web of Science (2017): Impact factor 12.353
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 11.8 SJR 6.414 SNIP 2.855
Web of Science (2016): Impact factor 12.124
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 11.23 SJR 6.287 SNIP 2.86
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 10.77 SJR 6.41 SNIP 3.034
Web of Science (2014): Impact factor 11.47
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 9.85 SJR 6.206 SNIP 2.797
Web of Science (2013): Impact factor 10.742