A Laboratory Exercise To Understand the Importance of Enzyme Technology in the Fruit-Processing Industry: Viscosity Decrease and Phenols Release from Apple Mash - DTU Orbit (31/12/2018)

A Laboratory Exercise To Understand the Importance of Enzyme Technology in the Fruit-Processing Industry: Viscosity Decrease and Phenols Release from Apple Mash

In a 4-h laboratory exercise, students accomplish a series of enzymatic macerations of apple mash, assess the viscosity of the mash during the maceration, extract the juice by centrifugation, and measure the levels of antioxidant phenols extracted into the juice after different enzyme treatments. The exercise shows the impact of enzyme-catalyzed plant cell-wall degradation on the viscosity of apple fruit mash and on the extraction of antioxidant phenols into experimentally prepared apple juice. The exercise also demonstrates that pectinolytic and cellulolytic enzymes have different effects on the viscosity of apple mash. Depending on the academic skills and background of the students, various aspects of quantitative enzyme activity assessment and advanced data analysis of decay curves can be included in the postexercise discussions and reporting of the data.

General information
State: Published
Organisations: Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, BioChemical Engineering
Contributors: Pinelo, M., Nielsen, M. K., Meyer, A. S.
Pages: 499-502
Publication date: 2011
Peer-reviewed: Yes

Publication information
Journal: Journal of Chemical Education
Volume: 88
Issue number: 4
ISSN (Print): 0021-9584
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.52 SJR 0.466 SNIP 0.944
Web of Science (2017): Impact factor 1.758
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.39 SJR 0.415 SNIP 0.934
Web of Science (2016): Impact factor 1.419
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.24 SJR 0.383 SNIP 0.967
Web of Science (2015): Impact factor 1.225
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.13 SJR 0.381 SNIP 1.004
Web of Science (2014): Impact factor 1.106
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.83 SJR 0.35 SNIP 0.982
Web of Science (2013): Impact factor 1.001
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.56 SJR 0.316 SNIP 0.874
Web of Science (2012): Impact factor 0.817
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.52 SJR 0.335 SNIP 0.847
Web of Science (2011): Impact factor 0.739
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes