A homogenization method for ductile-brittle composite laminates at large deformations -
DTU Orbit (16/01/2019)

A homogenization method for ductile-brittle composite laminates at large deformations
This paper presents a high fidelity homogenization method for periodically layered composite structures that accounts for plasticity in the matrix material and quasi-brittle damage in the reinforcing layers, combined with strong geometrical nonlinearities. A set of deliberately chosen internal kinematic variables results in a rigorous representation of the kinematics of the two constituents, which in turn allows for complex constitutive laws per constituent to be employed directly in the formulation. The model accounts for hyper-elastoplastic behavior in the matrix phase and hyper-elastic behavior in the reinforcement as well as for the bending stiffness of the reinforcement layers. Additionally to previously proposed models, the present method includes Lemaitre type damage for the reinforcement, making it applicable to a wider range of engineering applications. The capability of the proposed method in representing the combined effect of plasticity, damage and buckling at microlevel within a homogenized setting is demonstrated by means of direct comparisons to a reference discrete model.

General information
State: Published
Organisations: Department of Mechanical Engineering, Solid Mechanics
Contributors: Poulios, K., Niordson, C. F.
Pages: 814–833
Publication date: 2018
Peer-reviewed: Yes

Publication information
Volume: 113
Issue number: 5
ISSN (Print): 0029-5981
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.88 SJR 1.623 SNIP 1.493
Web of Science (2017): Impact factor 2.591
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.64 SJR 1.751 SNIP 1.594
Web of Science (2016): Impact factor 2.162
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.67 SJR 1.853 SNIP 1.648
Web of Science (2015): Impact factor 2.1
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.73 SJR 1.922 SNIP 1.935
Web of Science (2014): Impact factor 2.055
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.8 SJR 2.358 SNIP 1.863
Web of Science (2013): Impact factor 1.961
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.7 SJR 2.377 SNIP 2.074
Web of Science (2012): Impact factor 2.068
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2