A GRASP algorithm for the container stowage slot planning problem

This work presents a generalization of the Slot Planning Problem which raises when the liner shipping industry needs to plan the placement of containers within a vessel (stowage planning). State-of-the-art stowage planning relies on a heuristic decomposition where containers are first distributed in clusters along the vessel. For each of those clusters a specific position for each container must be found. Compared to previous studies, we have introduced two new features: the explicit handling of rolled out containers and the inclusion of separations rules for dangerous cargo. We present a novel integer programming formulation and a Greedy Randomized Adaptive Search Procedure (GRASP) to solve the problem. The approach is able to find high-quality solution within 1 s. We also provide comparison with the state-of-the-art on an existing and a new set of benchmark instances. (C) 2016 Elsevier Ltd. All rights reserved.

General information
State: Published
Organisations: Department of Transport, Transport optimisation and technique, Department of Management Engineering, Management Science, University of Castilla-La Mancha, University of Valencia
Contributors: Parreno, F., Pacino, D., Alvarez-Valdes, R.
Pages: 141-157
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Transportation Research. Part E: Logistics and Transportation Review
Volume: 94
ISSN (Print): 1366-5545
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.03
Web of Science (2017): Impact factor 3.289
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.68
Web of Science (2016): Impact factor 2.974
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.51
Web of Science (2015): Impact factor 2.279
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.59
Web of Science (2014): Impact factor 2.676
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.64
Web of Science (2013): Impact factor 2.193
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.91
Web of Science (2012): Impact factor 2.272
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.77
Web of Science (2011): Impact factor 1.648
ISI indexed (2011): ISI indexed yes