A Fitts' law study of click and dwell interaction by gaze, head and mouse with a head-mounted display

Gaze and head tracking, or pointing, in head-mounted displays enables new input modalities for point-select tasks. We conducted a Fitts' law experiment with 41 subjects comparing head pointing and gaze pointing using a 300 ms dwell \((n = 22) \) or click \((n = 19) \) activation, with mouse input providing a baseline for both conditions. Gaze and head pointing were equally fast but slower than the mouse; dwell activation was faster than click activation. Throughput was highest for the mouse (2.75 bits/s), followed by head pointing (2.04 bits/s) and gaze pointing (1.85 bits/s). With dwell activation, however, throughput for gaze and head pointing were almost identical, as was the effective target width (≈ 55 pixels; about 2°) for all three input methods. Subjective feedback rated the physical workload less for gaze pointing than head pointing.

General information
Publication status: Published
Organisations: Department of Management Engineering, Technology and Innovation Management, Department of Applied Mathematics and Computer Science, Cognitive Systems, Texas A and M University, York University Toronto
Pages: 1-5
Publication date: 2018

Host publication information
Title of host publication: Proceedings of the Workshop on Communication by Gaze Interaction
Publisher: Association for Computing Machinery
Article number: Article No. 7
ISBN (Print): 978-1-4503-5790-6
Keywords: Fitts' law, ISO 9241-9, Dwell activation, Gaze interaction, Head interaction, Head mounted displays
Electronic versions:
Hansen_2018_A_Fitts_law_study_of_click_and_dwell_interaction_by_gaze_head_and_mouse_with_a_head_mounted_displ ay.pdf
DOIs:
10.1145/3206343.3206344
Source: FindIt
Source-ID: 2435403610
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2018 › Research › peer-review