A fast and robust method for whole genome sequencing of the Aleutian Mink Disease Virus (AMDV) genome

Aleutian Mink Disease Virus (AMDV) is a frequently encountered pathogen associated with commercial mink breeding. AMDV infection leads to increased mortality and compromised animal health and welfare. Currently little is known about the molecular evolution of the virus, and the few existing studies have focused on limited regions of the viral genome. This paper describes a robust, reliable, and fast protocol for amplification of the full AMDV genome using long-range PCR. The method was used to generate next generation sequencing data for the non-virulent cell-culture adapted AMDV-G strain as well as for the virulent AMDV-Utah strain. Comparisons at nucleotide- and amino acid level showed that, in agreement with existing literature, the highest variability between the two virus strains was found in the left open reading frame, which encodes the non-structural (NS1–3) genes. This paper also reports a number of differences that potentially can be linked to virulence and host range. To the authors' knowledge, this is the first study to apply next generation sequencing on the entire AMDV genome. The results from the study will facilitate the development of new diagnostic tools and can form the basis for more detailed molecular epidemiological analyses of the virus.

General information
State: Published
Organisations: Department of Systems Biology, Molecular Evolution, National Veterinary Institute, Section for Virology, Center for Biological Sequence Analysis, Kopenhagen Fur
Number of pages: 9
Pages: 43-51
Publication date: 2016
Main Research Area: Technical/natural sciences

Publication information
Journal: Journal of Virological Methods
Volume: 234
ISSN (Print): 0166-0934
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): SJR 0.87 SNIP 0.736 CiteScore 1.78
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.868 SNIP 0.799 CiteScore 1.68
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.893 SNIP 0.952 CiteScore 1.87
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.861 SNIP 0.91 CiteScore 1.99
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.869 SNIP 0.935 CiteScore 2.08
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.907 SNIP 0.994 CiteScore 2.23
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.892 SNIP 0.998
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.964 SNIP 1.061