A diagrammatic description of the equations of motion, current and noise within the second-order von Neumann approach

We investigate the second-order von Neumann approach from a diagrammatic point of view and demonstrate its equivalence with the resonant tunneling approximation. The investigation of higher order diagrams shows that the method correctly reproduces the equation of motion for the single-particle reduced density matrix of an arbitrary non-interacting many-body system. This explains why the method reproduces the current exactly for such systems. We go on to show, however, that diagrams not included in the method are needed to calculate exactly higher cumulants of the charge transport. This thorough comparison sheds light on the validity of all these self-consistent second-order approaches. We analyze the discrepancy between the noise calculated by our method and the exact Levitov formula for a simple non-interacting quantum dot model. Furthermore, we study the noise of the canyon of current suppression in a two-level dot, a phenomenon that requires the inclusion of electron–electron interaction as well as higher order tunneling processes.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Stochastic Systems and Signals, Lund University, Technische Universität Berlin
Number of pages: 23
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Journal of Physics A: Mathematical and Theoretical
Volume: 46
Issue number: 6
ISSN (Print): 1751-8113
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.74 SJR 0.843 SNIP 0.924
Web of Science (2017): Impact factor 1.963
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.45 SJR 0.935 SNIP 0.959
Web of Science (2016): Impact factor 1.865
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.34 SJR 1.028 SNIP 1.048
Web of Science (2015): Impact factor 1.933
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.36 SJR 0.936 SNIP 0.945
Web of Science (2014): Impact factor 1.583
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.42 SJR 0.935 SNIP 0.998
Web of Science (2013): Impact factor 1.687
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.49 SJR 1.047 SNIP 1.067
Web of Science (2012): Impact factor 1.766
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1