A Diagnostic and Predictive Framework for Wind Turbine Drive Train Monitoring - DTU Orbit (28/12/2018)

A Diagnostic and Predictive Framework for Wind Turbine Drive Train Monitoring
Vast amount of data are collected minute by minute from wind turbines around the world. This thesis represents a focused research effort into discovering new ways of processing these data streams in order to gain insights which can be used to lower the maintenance costs of wind turbines and increase the turbine availability.

First, it is demonstrated how simple sensor data streams can be leveraged based on a combination of non-linear predictive models and unsupervised fault detection to provide warnings of a critical bearing failure more than a month earlier compared to existing alarm systems. Second, early fault identification based on analysis of complex vibration patterns which is a domain previously reserved for human experts, is shown to be solved with high accuracy using deep learning architecture strained in a fully supervised sense from the data collected in a large scale wind turbine monitoring platform. The research shows a way towards a fully automatized data-driven wind turbine diagnostic processing system that is highly scalable and requires little or no feature engineering and system modeling.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Cognitive Systems
Contributors: Bach-Andersen, M., Winther, O., Rømer-Odgaard, B.
Number of pages: 111
Publication date: 2018

Publication information
Publisher: Technical University of Denmark (DTU)
Original language: English
Electronic versions:
phd449_BachAndersen_M.pdf
Research output: Research › Ph.D. thesis – Annual report year: 2018