Recently, the interest in renewable energy sources is increasing. In the short future, their penetration in the power systems will be significantly higher than today. Denmark is working on achieving its goal by 2020 of having 30% of the energy production provided by renewable sources. 50% of the total power consumption is expected to stem from wind turbines. Due to the inherent stochasticity in renewable energy systems (RES), their energy production is usually complicated to forecast and control. The aim of the smart grid in which consumers as well as producers are controlled is to allow for larger variation in the power production due to the significant amount of renewable energy. The multiple power generators and consumers must be coordinated to balance the supply and demand for power at all times. The aim of this study is to examine a control technique for large scale distributed energy systems (DES), where a significant amount of renewable energy sources are present. Economic Model Predictive Control (MPC) is applied to control the power generators, minimizing the cost and producing the amount of energy required. We examine the large scale scenario, where multiple power generators and consumers such as e.g. electrical vehicles, heat pumps for domestic heating, and refrigeration and cooling systems must be controlled to balance the supply and demand for power. The system is very large scale. To address the large scale of the system and be able to compute the control decisions within a sample period, Dantzig-Wolfe decomposition is used for solution of the resulting linear program describing the Economic MPC of such systems. The controller obtained has been tested by simulations of a power portfolio system.