A Cure for Variance Inflation in High Dimensional Kernel Principal Component Analysis

Publication: Research - peer-reviewJournal article – Annual report year: 2011

View graph of relations

Small sample high-dimensional principal component analysis (PCA) suffers from variance inflation and lack of generalizability. It has earlier been pointed out that a simple leave-one-out variance renormalization scheme can cure the problem. In this paper we generalize the cure in two directions: First, we propose a computationally less intensive approximate leave-one-out estimator, secondly, we show that variance inflation is also present in kernel principal component analysis (kPCA) and we provide a non-parametric renormalization scheme which can quite efficiently restore generalizability in kPCA. As for PCA our analysis also suggests a simplified approximate expression. © 2011 Trine J. Abrahamsen and Lars K. Hansen.
Original languageEnglish
JournalJournal of Machine Learning Research
Publication date2011
Volume12
Pages2027-2044
ISSN1532-4435
StatePublished

Keywords

  • Kernel PCA, Generalizability, Variance renormalization, PCA
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 5810793