A convex programming framework for optimal and bounded suboptimal well field management

Publication: Research - peer-reviewJournal article – Annual report year: 2012

Documents

DOI

View graph of relations

This paper presents a groundwater management model, considering the interaction between a confined aquifer and an unlooped Water Distribution Network (WDN), conveying the groundwater into the Water Works distribution mains. The pumps are controlled by regulating the characteristic curves. The objective of the management is to minimize the total cost of pump operations over a multistep time horizon, while fulfilling a set of time-varying management constraints. Optimization in groundwater management and pressurized WDNs have been widely investigated in the literature. Problem formulations are often convex, hence global optimality can be attained by a wealth of algorithms. Among these, the Interior Point methods are extensively employed for practical applications, as they are capable of efficiently solving large-scale problems. Despite this, management models explicitly embedding both systems without simplifications are rare, and they usually involve heuristic techniques. The main limitation with heuristics is that neither optimality nor suboptimality bounds can be guarantee. This paper extends the proof of convexity to mixed management models, enabling the use of Interior Point techniques to compute globally optimal management solutions. If convexity is not achieved, it is shown how suboptimal solutions can be computed, and how to bind their deviation from the optimality. Experimental results obtained by testing the methodology in a well field located nearby Copenhagen (DK), show that management solutions can consistently perform within the 99.9% of the true optimum. Furthermore it is shown how not considering the Water Distribution Network in optimization is likely to result in unfeasible management solutions.
Original languageEnglish
JournalWater Resources Research
Publication date2012
Volume48
PagesW06525
Number of pages14
ISSN0043-1397
DOIs
StatePublished

Bibliographical note

©2012 American Geophysical Union.

CitationsWeb of Science® Times Cited: 0
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 9860929