A contribution to risk analysis for leakage through abandoned wells in geological CO2 storage

Publication: Research - peer-reviewJournal article – Annual report year: 2010

View graph of relations

The selection and the subsequent design of a subsurface CO2 storage system are subject to considerable uncertainty. It is therefore important to assess the potential risks for health, safety and environment. This study contributes to the development of methods for quantitative risk assessment of CO2 leakage from subsurface reservoirs. The amounts of leaking CO2 are estimated by evaluating the extent of CO2 plumes after numerically simulating a large number of reservoir realizations with a radially symmetric, homogeneous model To conduct the computationally very expensive simulations, the 'CO2 Community Grid' was used, which allows the execution of many parallel simulations simultaneously. The individual realizations are set up by randomly choosing reservoir properties from statistical distributions. The statistical characteristics of these distributions have been calculated from a large reservoir database, holding data from over 1200 reservoirs An analytical risk equation is given, allowing the calculation of average risk due to multiple leaky wells with varying distance in the surrounding of the injection well. The reservoir parameters most affecting risk are identified. Using these results, the placement of an injection well can be optimized with respect to risk and uncertainty of leakage The risk and uncertainty assessment can be used to determine whether a site, compared to others, should be considered for further investigations or rejected for CO2 storage
Original languageEnglish
JournalAdvances in Water Resources
Publication date2010
Volume33
Journal number8
Pages867-879
ISSN0309-1708
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 7

Keywords

  • Risk assessment, Leakage, CO2 storage, Multiphase flow
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 5865063