A contribution to late Middle Paleolithic chronology of the Levant: New luminescence ages for the Atlit Railway Bridge site, Coastal Plain, Israel - DTU Orbit (24/02/2019)

The Atlit Railway Bridge (ARB) prehistoric site is located on the northern coastal plain of Israel, within natural caves which formed in calcareous aeolianites (kurkar), perhaps during a high sea-stand. Flint artifacts belonging to the Levantine later Mousterian tradition and faunal remains were found embedded in the kurkar infill of two caves. The aeolianites in which the caves had developed were previously constrained by IRSL dating of feldspars to be older than the last interglacial highest sea-stand (Frechen M. et al., 2004; Chronology of Pleistocene sedimentary cycles in the Carmel Coastal Plain of Israel. Quaternary International 121, 1-52), providing a maximum age for the artifacts. Samples for luminescence dating were collected from the infill of the two caves (II and III), from the same deposits as the archaeological finds. Both quartz and alkali feldspars (KF) were extracted and measured using four different luminescence signals: optically stimulated luminescence (blue OSL) and violet stimulated luminescence (VSL) on quartz; and the infrared stimulated luminescence (IRSL) post-IR-IR$_{290}$ signal and the IR$_{50}$ signal corrected for anomalous fading on KF. The ages obtained from analyses of the different minerals and signals mostly agree within errors. The new luminescence ages date the sediment infill in Caves III and II to ~90 ka and ~70 ka, respectively, indicating that hominin occupation of this locality is coeval with the nearby Skhul Cave and Layer B in Tabun Cave.

General information
State: Published
Organisations: Center for Nuclear Technologies, Radiation Physics, The Geological Survey of Israel, University of Haifa, The Hebrew University-Hadassah Medical School
Contributors: Porat, N., Jain, M., Ronen, A., Horwitz, L.
Pages: 32-42
Publication date: 2018
Peer-reviewed: Yes

Publications information
Journal: Quaternary International
Volume: 464
Issue number: Part A
ISSN (Print): 1040-6182
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.03 SJR 1.123 SNIP 0.964
Web of Science (2017): Impact factor 2.163
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.19 SJR 1.121 SNIP 1.065
Web of Science (2016): Impact factor 2.199
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.99 SJR 1.167 SNIP 1.014
Web of Science (2015): Impact factor 2.067
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.06 SJR 1.182 SNIP 1.146
Web of Science (2014): Impact factor 2.062
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.12 SJR 1.101 SNIP 1.222
Web of Science (2013): Impact factor 2.128
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.02 SJR 1.198 SNIP 1.212
Web of Science (2012): Impact factor 1.962