A Consistent Methodology Based Parameter Estimation for a Lactic Acid Bacteria Fermentation Model - DTU Orbit (12/12/2018)

A Consistent Methodology Based Parameter Estimation for a Lactic Acid Bacteria Fermentation Model

Lactic acid bacteria are used in many industrial applications, e.g. as starter cultures in the dairy industry or as probiotics, and research on their cell production is highly required. A first principles kinetic model was developed to describe and understand the biological, physical, and chemical mechanisms in a lactic acid bacteria fermentation. We present here a consistent approach for a methodology based parameter estimation for a lactic acid fermentation. In the beginning, just an initial knowledge based guess of parameters was available and an initial parameter estimation of the complete set of parameters was performed in order to get a good model fit to the data. However, not all parameters are identifiable with the given data set and model structure. Sensitivity, identifiability, and uncertainty analysis were completed and a relevant identifiable subset of parameters was determined for a new parameter estimation including an evaluation of the correlation and confidence intervals of those parameters to double-check identifiability issues. Such a consistent approach supports process modelling and understanding as i.e., one avoids questionable interpretations caused by estimates of actually unidentifiable parameters.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, CAPEC-PROCESS, PILOT PLANT, Chr. Hansen AS
Contributors: Spann, R., Roca, C., Kold, D., Eliasson Lantz, A., Gernaey, K. V., Sin, G.
Pages: 2222-2226
Publication date: 2017

Host publication information
Title of host publication: Proceedings of the 27th European Symposium on Computer Aided Process Engineering (ESCAPE 27)
Volume: 40
Publisher: Elsevier
Editors: Espuña, A., Graells, M., Puigjaner, L.
Edition: 1
ISBN (Print): 9780444639653
ISBN (Electronic): 9780444639707
Keywords: Lactic acid bacteria, Parameter estimation, Sensitivity analysis, Identifiability analysis, uncertainty analysis mathematical and computer techniques
DOIs: 10.1016/B978-0-444-63965-3.50372-X
Research output: Research - peer-review > Article in proceedings – Annual report year: 2017