A conceptual framework for developing the next generation of Marine OBservatories (MOBs) for science and society

In the field of ocean observing, the term of "observatory" is often used without a unique meaning. A clear and unified definition of observatory is needed in order to facilitate the communication in a multidisciplinary community, to capitalize on future technological innovations and to support the observatory design based on societal needs. In this paper, we present a general framework to define the next generation Marine OBservatory (MOB), its capabilities and functionalities in an operational context. The MOB consists of four interconnected components or "gears" (observation infrastructure, cyberinfrastructure, support capacity, and knowledge generation engine) that are constantly and adaptively interacting with each other. Therefore, a MOB is a complex infrastructure focused on a specific geographic area with the primary scope to generate knowledge via data synthesis and thereby addressing scientific, societal, or economic challenges. Long-term sustainability is a key MOB feature that should be guaranteed through an appropriate governance. MOBs should be open to innovations and good practices to reduce operational costs and to allow their development in quality and quantity. A deeper biological understanding of the marine ecosystem should be reached with the proliferation of MOBs, thus contributing to effective conservation of ecosystems and management of human activities in the oceans. We provide an actionable model for the upgrade and development of sustained marine observatories producing knowledge to support science-based economic and societal decisions.

General information
State: Published
Organisations: National Institute of Aquatic Resources, Technical University of Denmark, Section for Oceans and Arctic, National Institute of Oceanography and Applied Geophysics, Stazione Zoologica Anton Dohrn Napoli, Hellenic Centre for Marine Research, National Oceanography Centre, University of Bremen
Contributors: Crise, A., d'Alcalà, M. R., Mariani, P., Petihakis, G., Robidart, J., Iudicone, D., Bachmayer, R., Malfatti, F.
Publication date: 7 Sep 2018
Peer-reviewed: Yes

Publication information
Journal: Frontiers in Marine Science
Volume: 5
Issue number: SEP
Article number: 318
Ratings:
BFI (2018): BFI-level 1
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.89 SJR 1.225 SNIP 0.862
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.53 SJR 1.425 SNIP 1.095
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.126 SNIP 0.812
BFI (2014): BFI-level 1
BFI (2013): BFI-level 1
ISI indexed (2013): ISI indexed no
Original language: English
Keywords: Cyberinfrastructure, Essential Ocean Variables, Global Ocean Observing System, Long-term sustainability, Marine OBServatory, Ocean observing

Electronic versions:
Publishers version
DOIs:
10.3389/fmars.2018.00318
Source: Scopus
Source-ID: 85053145726
Research output: Research - peer-review › Journal article – Annual report year: 2018