A comprehensive study of cryogenic cooled millimeter-wave frequency multipliers based on GaAs Schottky-barrier varactors

The benefit of cryogenic cooling on the performance of millimeter-wave GaAs Schottky-barrier varactor-based frequency multipliers has been studied. For this purpose, a dedicated compact model of a GaAs Schottky-barrier varactor using a triple-anode diode stack has been developed for use with a commercial RF and microwave CAD tool. The model implements critical physical phenomena such as thermionic-field emission current transport at cryogenic temperatures, temperature dependent mobility, reverse breakdown, self-heating, and high-field velocity saturation effects. A parallel conduction model is employed in order to include the effect of barrier inhomogeneities which is known to cause deviation from the expected I–V characteristics at cryogenic temperatures. The developed model is shown to accurately fit the I–V -T dataset from 25 to 295 K measured on the varactor diode stack. Harmonic balance simulations using the model are used to predict the efficiency of a millimeter-wave balanced doubler from room to cryogenic temperatures. The estimation is verified experimentally using a 188 GHz balanced doubler cooled down to 77 K. The model has been further verified down to 14 K using a 78 GHz balanced doubler.

General information
State: Published
Contributors: Johansen, T. K., Rybalko, O., Zhurbenko, V., Bulcha, B., Hesler, J.
Number of pages: 10
Pages: 1-10
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: International Journal of Microwave and Wireless Technologies
ISSN (Print): 1759-0787
Ratings:
Web of Science (2019): Indexed yes
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 0.6 SJR 0.184 SNIP 0.432
Web of Science (2017): Impact factor 0.745
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 0.65 SJR 0.21 SNIP 0.497
Web of Science (2016): Impact factor 0.976
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 0.53 SJR 0.201 SNIP 0.486
Web of Science (2015): Impact factor 0.472
Scopus rating (2014): CiteScore 0.55 SJR 0.211 SNIP 0.343
Web of Science (2014): Impact factor 0.348
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 0.81 SJR 0.257 SNIP 0.657
Web of Science (2013): Impact factor 0.456
ISI indexed (2013): ISI indexed yes
Scopus rating (2012): CiteScore 0.77 SJR 0.273 SNIP 0.561
Web of Science (2012): Impact factor 0.573
ISI indexed (2012): ISI indexed no
Scopus rating (2011): CiteScore 0.62 SJR 0.216 SNIP 0.544
ISI indexed (2011): ISI indexed no
Scopus rating (2010): SJR 0.157 SNIP 0.233
Original language: English
Keywords: Semiconductor Devices and IC-Technologies, TeraHertz Technology and Applications
DOIs:
10.1017/S1759078717001490
Source: FindIt
Source-ID: 2395888395
Research output: Research - peer-review ; Journal article – Annual report year: 2018